使用说明书

OPERATION MANUAL

TH2817CX 型 LCR 平衡测试仪 TH2817CX LCR Balance Tester

日期 日期

Tonghui Electronic Co., Ltd.

地址: 江苏省常州市天山路3号

TEL: (0519) 85132222, 85113342

FAX: (0519) 85109972

EMAIL: sales@tonghui.com.cn

Http://www.tonghui.com.cn

版本历史:

本说明书将不断完善以利于使用。

由于说明书中可能存在的错误或遗漏,仪器功能的改进和完善,技术的更新及软件的 升级,说明书将做相应的调整和修订。

请关注您使用的软件版本及说明书版本。

2011年04月......第一版

第一版 二零一一年四月

२声明:本公司可能对该产品的性能、功能、软件、结构、外观、附件、包装以及 说明书等进行完善和提高,恕不另行通知!如造成疑惑,请与本公司联系。

安全警告:

- ★ (人器 法) 本 (人器 人名) 本 (人器 人名) 本 (人名) 本 (人A) + (A) x (A) + (A)
- ~ 触电危险 操作,测试与与仪器维护时谨防触电,非专业人员请勿 擅自打开机箱,专业人员如需更换保险丝或进行其它维护, 务必先拔去电源插头,并在有人员陪同情况下进行。 即使已拔去电源插头,电容上电荷仍可能会有危险电压, 应稍过几分钟待放电后再行操作。
- 请按本仪器规定的电源参数要求使用电源,不符合规格 か 輸入电源 的电源输入可能损坏本仪器。 更换保险丝请使用相同规格
- + 远离爆炸 电子仪器不可以在易燃易爆气体环境中使用,或者在含 性气体环 有腐蚀性气体或烟尘环境中使用,避免带来危险。 境
- ▲ 其它安全 请不要向本仪器的测试端子以及偏置源监测端子随意施 其它安全 加外部电压源或电流源。
 - 事项 使用外部偏置电流源或电压源测试时,必需有隔离措施。

目录

第一章 概述	
1.1 引言	1
1.2 使用条件	2
1.2.1 电源 \land	2
1.2.2 环境温度与湿度	2
1.2.3 预热	2
1.2.4 几点注意问题企	
1.3 体积与重量	
1.4 安全要求	
1.5 电磁兼容性	
第二章 基本性能指标	4
2.1 测量功能	4
2.1.1 测量参数	
2.1.2 测量参数组合	4
2.1.3 等效方式	5
2.1.4 量程	5
2.1.5 触发方式	6
2.1.6 测量延时	6
2.1.7 测量端方式	6
2.1.8 测量速度	6
2.1.9 滤波深度	6
2.1.10 基本精度	7
2.2 测试信号	7
2.2.1 测试信号频率	7
2.2.2 测试信号电平	7
2.2.3 输出阻抗	7
2.2.4 偏置	7
2.2.5 测量显示范围	7
2.3 功能	

2.3.1 校正功能	
2.3.2 比较器功能	
2.3.3 参数显示	
2.3.4 变压器参数测试	
2.3.5 平衡测试	9
2.3.6 自动 LCZ 功能	9
2.3.7 放电测试	9
2.3.8 文件功能	9
2.3.9 接口功能	9
第三章 面板说明	11
3.1 前面板说明	
3.2 后面板说明	
3.3 显示区域说明	
3.4 主菜单按键	
3.5 显示页面概要	14
第四章 使用说明	16
4.1 开机	
4.2 显示画面说明	
4.2.1 元件测量显示页面	16
4.2.2 档号显示页面	
4.2.3 平衡测试显示页面	
4.2.4 平衡测量档号显示页面	
4.2.5 双频平衡测量显示页面	
4.2.6 测量设置页面	
4.2.7 极限列表设置页面	
4.2.8 平衡极限列表设置页面	
4.2.9 系统配置页面	
4.2.10文件列表页面	
第五章 元件测量与应用指南	49

5.1 常用元	+测量
---------	-----

TH2817CX 使用说明书	目录
5.2 被测件的正确连接	
5.2.1 被测件连接	
5.2.2 消除杂散阻抗的影响	
5.3 电感器的测量	
5.4 电容器的正确测量	
5.4.1 电容器的频率依赖性	
5.4.2 电容器损耗测量	
5.4.3 电容器的电平依赖性	
5.4.4 SMD 电容器的测量	
5.5 变压器测量	
5.5.1 初次级电感 L2A、L2B	
5.5.2 匝比与极性测量 N、1/N	
5.5.3 互感测量 M	
5.5.4 直流电阻测量 R2、DCR	
5.5.5 漏感测量 Lk	
5.5.6 绕组间电容 Co	
5.6 比较器设置实例	
5.6.1 电容器分选	61
5.6.2 磁环分选	
第六章 性能测试	
6.1 测量准确度	
6.1.1 Z , L, C, R, X的准确度	
6.1.2 D 准确度	
6.1.3 Q 准确度	
6.1.4 θ准确度	
6.1.5 RBB _{PBB} 准确度	
6.1.6 RBB _{\$BB} 准确度	
6.1.7 变压器参数准确度	
6.1.8 准确度因子	
6.2 性能测试	
6.2.1 性能测试所用器件及设备	
6.2.2 功能检查	
6.2.3 测试信号电平精度测试	
6.2.4 频率精度测试	
III	

6.2.5 电容量 C、损耗 D 精度测试	TH2817C2	X 使用说明书	目录
6.2.6 电感量 L 精度测试 6.2.7 阻抗 Z 精度测试 第七章 远程控制 77.1 RS232C 接口说明 7.1.1 RS232C 接口说明 7.1.2 与计算机通讯 7.2 GPIB 接口说明 7.2.1 GPIB 总线 7.2.2 GPIB 接口功能 7.2.3 GPIB 地址 7.2.4 GPIB 总线功能 7.2.4 GPIB 总线功能 7.3 数据格式 第八章 命令参考 第二章 命令参考 8.1 命令结构 8.2 符号约定与定义 8.3 命令参考 8.3.1 DISPIay 子系统命令 8.3.2 FREQuency 子系统命令 8.3.3 VOLTage 子系统命令 8.3.4 FUNCtion 了系统命令 8.3.5 FFTCh?了系统命令 8.3.6 APERture 子系统命令 8.3.7 TRIGger 子系统命令 8.3.8 CORRection 子系统命令 8.3.9 COMParator 子系统命令 8.3.10 BALcompare 子系统命令 8.3.10 DALcompare 子系统命令 8.3.11 Mass MEMory 子系统命令 8.3.12 DRequency 子系统命令 8.3.13 DJ Rado	6.2.5	电容量 C、损耗 D 精度测试	
6.2.7 阻抗 Z 精度测试 7 第七章 远程控制 7 7.1 RS232C 接口说明	6.2.6	电感量 L 精度测试	
第七章 远程控制 7 7.1 RS232C 接口说明	6.2.7	阻抗 Z 精度测试	
7.1 RS232C 接口说明	第七章	远程控制	
7.1.1 RS232C 接口简介	7.1 RS2	232C 接口说明	
7.1.2 与计算机通讯 7.2 GPIB 接口说明 7.2.1 GPIB 总线 7.2.2 GPIB 接口功能 7.2.3 GPIB 地址 7.2.4 GPIB 总线功能 7.3 数据格式 第八章 命令参考 第八章 命令参考 8.1 命令结构 8.2 符号约定与定义 8.3 命令参考 8.3.1 DISPlay 子系统命令 8.3.2 FREQuency 子系统命令 8.3.3 VOLTage 子系统命令 8.3.5 FETCh? 子系统命令 8.3.7 TRIGger 子系统命令 8.3.8 CORRection 子系统命令 8.3.9 COMParator 子系统命令 8.3.10 BALCompare 子系统命令 8.3.11 Mass MEMory 子系统命令 8.3.12 DFRequency 子系统命令 8.3.12 DFRequency 子系统命令 8.3.11 Mass MEMory 子系统命令 8.3.12 DFRequency 子系统命令 8.3.13 公用命令	7.1.1	RS232C 接口简介	
7.2 GPIB 接口说明	7.1.2	与计算机通讯	74
7.2.1 GPIB 总线	7.2 GPI	IB 接口说明	
7.2.2 GPIB 接口功能	7.2.1	GPIB 总线	
7.2.3 GPIB 地址	7.2.2	GPIB 接口功能	
7.2.4 GPIB 总线功能	7.2.3	GPIB 地址	
7.3 数据格式	7.2.4	GPIB 总线功能	
第八章 命令参考 8 8.1 命令结构 8 8.2 符号约定与定义 8 8.3 命令参考 8 8.3.1 DISPlay 子系统命令 8 8.3.2 FREQuency 子系统命令 8 8.3.3 VOLTage 子系统命令 8 8.3.4 FUNCtion 子系统命令 8 8.3.5 FETCh? 子系统命令 8 8.3.6 APERture 子系统命令 8 8.3.7 TRIGger 子系统命令 8 8.3.8 CORRection 子系统命令 8 8.3.9 COMParator 子系统命令 8 8.3.10 BALCompare 子系统命令 8 8.3.11 Mass MEMory 子系统命令 8 8.3.12 DFRequency 子系统命令 8 8.3.13 公用命令 9	7.3 数排	屠格式	
 8.2 符号约定与定义 8.3 命令参考	舟八早 8.1 命≪	如 <i>令参与</i>	
 8.3 命令参考	8.2 符·	号约定与定义	
8.3.1 DISPlay 子系统命令	8.3 命令	令参考	
 8.3.2 FREQuency 子系统命令	8.3.1	DISPIay 子系统命令	
 8.3.3 VOLTage 子系统命令	8.3.2	FREQuency 子系统命令	
 8.3.4 FUNCtion 子系统命令	8.3.3	VOLTage 子系统命令	
 8.3.5 FETCh?于系统命令	8.3.4	FUNCtion 子系统命令	
 8.3.6 APERture 于系统命令. 8.3.7 TRIGger 子系统命令. 8.3.8 CORRection 子系统命令. 8.3.9 COMParator 子系统命令. 8.3.10 BALCompare 子系统命令. 8.3.11 Mass MEMory 子系统命令. 8.3.12 DFRequency 子系统命令. 8.3.13 公用命令. 	8.3.5	FETCh? 子系统命令	
 8.3.7 IRliger 丁东统印令	8.3.6	APERTURE 丁系统命令	
8.3.8 CORRECTION 于东纪印令 8.3.9 COMParator 子系统命令 8.3.10 BALCompare 子系统命令 8.3.11 Mass MEMory 子系统命令 8.3.12 DFRequency 子系统命令 8.3.13 公用命令	8.3.1	IRIGEF 丁糸筑命令	
8.3.7 Comparation J 永纯前マ 8.3.10 BALCompare 子系统命令 8.3.11 Mass MEMory 子系统命令 8.3.12 DFRequency 子系统命令 8.3.13 公用命令	0.3.0	CORRECTION 」示玩叩令	
8.3.11 Mass MEMory 子系统命令 8.3.12 DFRequency 子系统命令 8.3.13 公用命令	0.3.7 8 3 10	- CONFAIALUI J 永北市マーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	101
8.3.12 DFRequency 子系统命令 8.3.13 公用命令	8,3.11	- Mass MEMory 子系统命令	
8.3.13 公用命令	8.3.12	2 DFRequency 子系统命令	
	8.3.13	3 公用命令	
8.4 出错信息	8.4 出街	#信息	

TH2817CX 使用说明书	目录
第九章 分选接口使用说明	109
9.1 基本信息	
9.2 信号定义	110
9.3 电气特征	112
9.3.1 直流隔离输出	
9.3.2 直流隔离输入	115
第十章 成套与保修	117
10.1 成套	117
10.2 保修	117

第一章 概述

感谢您购买和使用我公司产品,在您使用本仪器前首先请根据说明书最后一章"成套 和保修"的事项进行确认,若有不符请尽快与我公司联系,以维护您的权益。

1.1 引言

TH2817CX 型 LCR 测试仪是一种高精度、高稳定性、宽测试范围的由微处理器控制的阻抗测量仪器。可以选择 50Hz~100kHz 之间共十点测试频率,并可选择 0.1V、0.3V、1V 三种测试信号电平,可以测量电感 L、电容 C、电阻 R 等多种常规的元件参数;还扩展了变压器参数测试功能(如初次级电感 L2A,L2B,匝比与极性 N,互感 M,直流电阻 DCR,R2 等),内置偏压或偏流可满足电容器、电感器及变压器的偏压与偏流的测试需求。

本仪器还具有高效的平衡测试功能,通过一次对两个器件的同时测量,可以方便地对 平衡器件对比测试,如集成分压电阻、平衡电容及共模滤波器等进行测试,特别是针对共 模滤波器,还具备 DCR 平衡测试功能。

本仪器采用 240×64 点阵图形 LCD 显示屏,直观简洁,操作方便,能很好的适应生 产现场快速检验的需要以及实验室高精确度高稳定度的测量需要。功能齐备、成熟而又完 善的 HANDLER 接口、RS232C 接口以及可选的 IEEE488(GPIB) 接口为仪器使用于自动分选 系统和计算机远程操作提供了条件。

注意: 在平衡测试状态下,若暂时不测量,请切换到常规 LCR 测试状态,这样可以 延长仪器内部继电器的使用寿命。

仪器提供了多种可变的测试条件,典型的有:

Ⅰ 测试信号频率:

50Hz~100kHz 间共十个典型频率:

50Hz, 60Hz, 100Hz, 120Hz, 1kHz, 10kHz, 20kHz, 40kHz, 50kHz, 100kHz;

- Ⅰ 测试信号电平: 0.1V、0.3V、1V 三种测试电平;
- Ⅰ 测试速度:可以选择快速、中速、慢速三种速度,同时可进行 1~255 次可编程的数 字滤波来提高读数稳定性;
- I 恒定可选的源内阻: 30Ω或 100Ω;
- I 直流偏置:可提供直流偏置电压和直流偏置电流。
- 1 清 "0": 仪器可对测试端进行开路或短路的点频或扫频清 "0",将存在于仪器测试端的杂散电容和引线电阻消除以进一步提高测量精度。

仪器提供三种数据显示方式和两种数据分选方式:

直接读数:直接显示被测件的参数;
 绝对偏差显示Δ:测量值与标称值的绝对偏差;
 百分比偏差显示%:测量值与标称值的百分比偏差。

元件分选:可使用绝对值公差(±TOL)、百分比公差(%TOL)两种比较方式
 4档分选:3个合格档,1个不合格档,另有1个附属档。

仪器还提供多种方便的通讯接口为仪器的测量结果输出至外部设备(如计算机)或组成自动测试系统提供了极大的方便:

- Ⅰ 串行接口: **RS-232C** 为仪器与外设的串行通讯提供了极大方便,外设可通过该接口对 仪器进行各项功能和参数的设定,基本可取代键盘的功能;
- Ⅰ **IEEE-488** 接口(选件): 该通用接口为仪器与计算机和其他测量仪器共同组成自动测 试系统提供了方便。

RS-232C 和 **IEEE-488** 接口命令使用国际惯用的**可程控仪器标准命令(SCPI)**格式编写, 极大地方便了用户编程。

用户可通过本说明书中"命令参考"中所提供的控制命令建立基于 WINDOWS 的操作与 控制界面,以组成元件的自动检测分析系统。

I HANDLER 接口: 该接口可使仪器与元件的机械处理设备相同步并检测分选元件,将分档结果输出至机械处理设备。

本仪器同时还提供了方便实用的文件功能,可将用户设定的测量参数,极限参数保存 下来。**当前被保存或最近一次调用过的文件号将被仪器下次开机时自动加载**,从而在生产 线批量测试以及自动测试系统中开机即可使用。

1.2 使用条件

1.2.1 电源 \land ~

电源电压: 220V(1±10%) 电源频率: 50Hz/60Hz(1±5%) 功耗: <50VA

1.2.2 环境温度与湿度

正常工作温度: 0°C~40°C, 湿度: < 90% H 参比工作温度: 20°C±8°C, 湿度: < 80% H 运输环境温度: 0°C~55°C, 湿度: ≤ 93% H

1.2.3 预热

开机后预热时间: ≥ 20 分钟

1.2.4 几点注意问题 🕰

(1) 请不要在多尘、震动、日光直射、有腐蚀气体等不良环境下使用。

(2) 仪器长期不使用,请将其放在原始包装箱或相似箱子中储存在温度为5℃~40℃, 相对湿度不大于85%H的通风室内,空气中不应含有腐蚀测量仪的有害杂质,且应避 免日光直射。

(3) 本仪器已经经过仔细设计以减少因 AC 电源端输入带来的杂波干扰,然而仍应尽量使其在低杂讯的环境下使用,如果无法避免,请安装电源滤波器。

(4) 请勿频繁开关仪器,以免造成存储数据的丢失。

1.3 体积与重量

宽×高×深: 350*120*400 (mm³) 重量:约 4kg

1.4 安全要求

本仪器为Ⅰ类安全仪器

(1) 绝缘电阻

在参比工作条件下,电源端子与外壳之间的绝缘电阻不小于 **50Μ**_Ω; 在湿热运输条件下,电源端子与外壳之间的绝缘电阻不小于 **2Μ**_Ω;

(2) 绝缘强度

在参比工作条件下,电源端子与外壳之间能承受额定电压为 **1.5kV**,频率为 **50Hz** 的交流电压 **1** 分钟,无击穿及飞弧现象。

(3) 泄漏电流

泄漏电流不大于 3.5mA。

1.5 电磁兼容性

- (1) 电源瞬态敏感度按 GB6833.4 的要求。
- (2) 传导敏感度按 GB6833.6 的要求。
- (3) 辐射干扰按 GB6833.10 的要求。

第二章 基本性能指标

2.1 测量功能

2.1.1 测量参数

常规参数

L:	电感	C:	电容	R:	电阻
Z:	阻抗	X:	电抗		
D:	损耗	θ:	相位角	Q:	品质因素
DC	R: 直流电阻				
变月	玉器参数(采用]二约	浅 测量方式	;);	
L2A	A: 初级电感		L2B	: 汐	、级电感
N,	1/N: 匝比与标	及性	M:	互愿	戍
R2:	直 流电阻				

2.1.2 测量参数组合

LCR 测试参数:

主参数	副参数
L	θ°(角度), θr(弧度), R, X, DCR, Q, D
С	θ°(角度), θr(弧度), R, X, Q, D
R	θ°(角度), θr(弧度), R, X, Q, D
Z	θ°(角度), θr(弧度), R, X, Q, D
L2A, L2B	N, 1/N, M, R2

平衡测试参数:

主参数	副参数
LsA	LsB
LpA	LpB
CsA	CsB
СрА	СрВ
RsA	RsB
RpA	RpB
ZA	ZB
R2A	R2B

注: 元件参数中, 下标 s 表示串联等效, p 表示并联等效。

2.1.3 等效方式

串联,并联

实际电感、电容、电阻并非理想的纯电抗或电阻元件,而是以串联或并联形式呈现为 一个复阻抗元件,本仪器根据串联或并联等效电路来计算其所需值,不同等效电路将得到 不同的结果。其不同性取决于不同的元件。

两种等效电路可通过一定的公式进行转换,比如:

	电路形式	损耗 D	等效方式转换
L		D=2πfLp/Rp=1/Q	$Ls=Lp/(1+D_{a}^{2})$ Rs=RpD_{a}^{2}/(1+D_{a}^{2})
	Ls Rs	D=Rs/2πfLs=1/Q	$Lp=(1+D^{2})Ls$ $Rp=(1+D^{2})Rs/D^{2}$
C		D=1/2πfCpRp=1/Q	$Cs=(1+D_{2}^{2})Cp$ $Rs=RpD_{2}^{2}/(1+D_{2}^{2})$
	Cs Rs	D=2πfCsRs=1/Q	$Cp=Cs/(1+D_{-}^{2})$ $Rp=Rs(1+D_{-}^{2})/D_{-}^{2}$

注1: 元件参数中, 下标 s 表示串联等效, p 表示并联等效

注 2: Q、D、Xs 的定义为: Q=Xs/Rs, D=Rs/Xs, Xs=1/2πfCs=2πfLs

因此在不同的等效方式下,电感,电容测量值是有区别的,而D和Q一样的!

一般地,对于低值阻抗元件(基本是高值电容和低值电感)使用串联等效电路,反之, 对于高值阻抗元件(基本是低值电容和高值电感)使用并联等效电路。

同时,也须根据元件的实际可评估性和电路应用选择其等效电路,如对电容器,用于 电源滤波时常使用串联等效电路,而用于 LC 振荡电路时使用并联等效电路。

2.1.4 量程

自动与手动(AUTO—HOLD/UP/DOWN)。 LCR 测试共9个量程。 DCR 测试具有10个量程

2.1.5 触发方式

内部 (INT), 外部 (EXT), 手动 (MAN), 总线 (BUS)

内部: 触发信号由仪器内部自动生成,因而测量可以连续不断的进行。

手动: 按面板 TRIGGER 键形成一次触发。

外部: 仪器 HANDLER 接口板从外部接收到"启动"信号后, 触发一次测量。

总线:通过 RS232C 或 GPIB 总线接受到触发命令后启动一次测量。

2.1.6 测量延时

测量结束后的等待时间。

如果设置了 HANDLER 接口清除,则延时后 HANDLER 接口上的信号将被撤消。 **F提示:**参见第四章系统设置部分。

2.1.7 测量端方式

常规测量: 四端对

 Hcur:
 电流高端(简称 Hc)
 Lcur:
 电流低端(简称 Lc)

 Hpot:
 电压高端(简称 Hp)
 Lpot:
 电压低端(简称 Lp)

 变压器测量:

Hpot---Lpot: 变压器初级(绕组A)

Hcur---Lcur: 变压器次级(绕组 B)

1 注意:使用非本公司随机标准配置的测试夹具或电缆线时,请确保 Hcur 与 Lcur 的屏蔽端以低阻抗可靠短接。

2.1.8 测量速度

测试频率、积分时间、元件值大小、显示方式、量程方式、平均次数及比较器等均会影响测量速度。

以下速度参数在 **10kHz** 频率,量程锁定,关闭比较器,无通讯接口,常规参数测量下 评估,为本仪器可能达到的最大值。

- 快速 (FAST):大约 20 次/秒
- 中速 (MED):大约 10 次/秒;
- 慢速 (SLOW):大约 2 次/秒。

低频率(1kHz 以下)测量速度将显著降低。

同等条件的变压器参数测量特别是直流电阻测试时速度将有所降低。

2.1.9 滤波深度

1~255,可编程。

2.1.10 基本精度

0.1%

2.2 测试信号

2.2.1 测试信号频率

50Hz, 60Hz, 100Hz, 120Hz, 1kHz, 10kHz, 20kHz_Z, 40kHz, 50kHz, 100kHz共十 点典型频率。

频率准确度: 0.02%

2.2.2 测试信号电平

仪器提供 0.1V, 0.3V, 1V 三种测试电平。准确度: ± (10%×设定值+2mV)

2.2.3 输出阻抗

30 Q ±5%, 100 ± 5% 工作在偏流模式时固定为 100 Q 源内阻。

2.2.4 偏置

内置偏压,固定+2V,-2V 内置偏压,外部调节-5V~+5V 选择偏流模式,则偏流大小为:

$$Ib = \frac{Vb}{Rs + Rx}$$

Vb 为偏压值, Rs 为源内阻 (100Ω), Rx 为 DUT 直流电阻。 偏置电流约为-50mA~+50mA 可调。

2.2.5 测量显示范围

参数	测量显示范围	
L	0.001 µ H∼99.999kH	
С	0.001pF~9999.9 µ F	
R, X, Z	$0.0001 \Omega \sim 99.999 M \Omega$	
DCR, R2	$0.01 \mathrm{m}\Omega \sim 1.9999 \mathrm{M}\Omega$	
L2A, L2B	0.001 µ H∼99.999kH	
D	0.0001~9.9999	

Q	0.0001~9999.9
θ	角度 DEG -179.99°~179.99°
0	弧度 RAD -3.1416~3.1416
%	-99.999%~999.99%

非百分比数据超出显示范围时,显示为"-----"

2.3 功能

2.3.1 校正功能

开路清"0":清除测试端或仪器内部杂散阻抗的影响。

短路清"0":清除引线串联电阻和电感的影响。

电缆长度校正:

0m: 使用端面夹具进行测量;

1m: 使用 TH26009, TH26011 等带 1m 电缆的测试线进行测量; 清零功能可以关闭。

2.3.2 比较器功能

仪器可进行多档分选,并支持 HANDLER 接口信号输出。

合格档(BIN1-BIN3):表示主参数、副参数均合格。

附属档(AUX):表示主参数合格但副参数不合格,且附属AUX开关打开(ON)。不合格档(OUT或NG):主参数不合格或者主参数合格但副参数不合格且附属AUX关闭(OFF)。

分选方式:

绝对值公差(**±TOL**)分选:测量值与标称值的绝对偏差与各档极限进行比较。 百分比公差(**%TOL**)分选:测量值与标称值的百分比偏差与各档极限进行比较。

2.3.3 参数显示

- ◆ 直读显示 (元件的实际测量值)
- ◆ 偏差显示⊿ (测量值与标称值的绝对偏差)
- ◆ 百分比显示% (测量值与标称值的百分比偏差)

2.3.4 变压器参数测试

本仪器通过两线方式对变压器测量。 变压器测量时必需使用专用的变压器测试夹具。 两线测量精度低于四端测量。

2.3.5 平衡测试

本仪器通过一次对两个器件的同时测量,可以方便地对平衡器件进行对比测试,如集成分压电阻、平衡电容及共模滤波器等进行测试,特别是针对共模滤波器,还具备 DCR 平衡测试功能。

2.3.6 自动 LCZ 功能

仪器可根据 DUT 阻抗性质自动选择 L、C、Z 以及串并联等效方式,适合于未知及混合元件的自动识别。

自动模式下, 主副参数根据阻抗角选择:

 $\theta > 5$ 的, \rightarrow L-Q $\theta < -5$ 时, \rightarrow C-D 其它值时, \rightarrow Z- θ 串并联等效方式按阻抗选择:

 $Z > 1k \Omega$ 时, → 并联方式

Z < 1k Ω时, → 串联方式

类似于开路或短路状态时,保持原参数不变。 如果用户更改主副参数,则自动LCZ功能即被取消。

2.3.7 放电测试

仪器与外部偏置配合使用时,一般外部偏置源具有直流隔离电路,打开放电功能后,本仪器测试采样通道上进行低阻抗放电,以减少隔离电容上的充电对测试精度及速度的影响。

低阻抗维持时间: 10 ~ 20ms

2.3.8 文件功能

仪器测量参数(如频率、电平等)、测量设置中的内容,比较器极限数据可以文件形 式存入仪器内部非易失性存储器内,在需要时可以直接从文件菜单中调用,以节省用户重 复设定参数的时间。

仪器内共可存入十二组文件。

最近一次存入及调用过的文件将在下次开机后被自动调用。

2.3.9 接口功能

◆IEEE488 通用并行接口

也称 GPIB 接口,等同 IEC625 接口(与 IEEE488 口的连接器不一样)。 通讯命令采用 SCPI 格式,总线上全部命令和数据一律采用 ASCII 码传送。 结束符支持 LF, CR, CR+LF 以及 EOI。 支持自动 FETCH(获取测试结果)。 接口功能有 SH1, AH1, T5, L4, RL1, DC1, DT1, C0, E1。 兼容 IEEE488.1 和 IEEE488.2。

◆RS232C 串行通讯接口

使用标准 RS232C 的最小子集,不支持硬件联络功能。 传输波特率可变: 4800bps, 9600bps, 11520bps, 12800bps, 14400bps, 19200bps, 28800bps, 38400bps 信号逻辑电平: ±8V 最大传输距离: 15m。 通讯命令采用 SCPI 格式,总线上全部命令和数据一律采用 ASCII 码传送。 结束符支持 LF, CR, CR+LF。 支持自动 FETCH (获取测试结果)。

◆HANDLER 接口

可接受触发信号,输出分选比较结果信号。 可输出测量同步信号(IDX,EOM)。 逻辑电平为低电平有效,光电隔离输出,默认使用外部电源。 触发沿可选择上升沿或下降沿。 测量输出信号可选择是否在测量延时后清除。

第三章 面板说明

3.1 前面板说明

图 3-1 前面板

1	商标及型号			
2	LCD 液晶显示屏幕	240×64 点阵液晶显示器,显示所有的测量参数、状态、		
2		测量结果等。		
3	DISPLAY 主菜单按键	用于进入元件测量显示页面		
4	SETUP 主菜单按键	用于进入元件测量设置页面		
5	SYSTEM 主菜单按键	用于进入系统设置页面		
6	数字键盘	用于输入数字或需要时输入字符(文件名)		
7	回车键(ENTER)	确认输入的数字		
8	退格键(BACKSPACE)	用于删除误输入的数字或字母		
0	施告键(TDICCED)	当仪器被设定为手动触发状态时,按此键,用于触发仪器		
9	肥反键(IKIGGEK)	测量。		
10	读业治	可以与被测器件的屏蔽层连接,以隔离外界电磁干扰,提		
10	按地场	高测量的精度和稳定性。		
		四端对测试端		
		常规测量时:		
11	测试端	H _{CUR} : 电流激励高端(Hc)。		
11	(UNKNOWN)	HPOT: 电压取样高端(Hp)。		
		L _{POT} : 电压取样低端(Lp)。		
		L _{CUR} : 电流激励低端(Lc)。		

		变压器、平衡测量时:	
		Hpot-Lpot: 变压器初级(A 组)	
		Hcur-Lcur: 变压器次级(B组)	
12	方向键 (CUPSOP)	用于控制反白条在液晶显示器上控制参数区域之间移动,	
12	力问证(CURSOR)	被选中的控制参数在液晶显示器上呈反白条显示。	
	12 标牌(SOFTIEN-)	这部分五个键的功能是"软的",即它们的功能不是固定	
12		的,在不同的菜单有着不同的功能,方便的是,它们的当	
15	扒键(SUFIKEIS)	前功能被相应地显示在液晶显示屏下面的"软键"显示区	
		域。	
14		开关处于按下位置时,接通电源;处于弹出位置时,切断	
14	电你开大(POWER)	电源	

3.2 后面板说明

图 3-3 后面板

		提供仪器与外部设备的通用并行通讯接口,所有参数设
1	IEEE488 口(选件)	置,命令等均可由计算机设定和获得,以实现无仪器面板
		的远程控制,此接口为选装件。
2	RS232C 串行接口	串行通讯接口
3 HAN		仪器通过该接口输出档比较结果等,同时通过分选接口获
		得"启动"信号
4	铭牌	指示仪器编号、生产厂家等信息
5	接地	电源线没有接地或接地不可靠的,请在此处连接接地线
6	保险丝	用于保护仪器
7	三线电源插座	用于输入交流电源

第三章 面板说明

8	偏置电压监测端子	本仪器内置-5V~+5V的可调偏置电压,可通过直流电压 表监测实际偏置电压大小。
9	偏压调节电位器	内置-5V~+5V的偏压调节电位器。选择偏流模式后,通过调节偏压大小可获得-50mA~+50mA的偏流。

3.3 显示区域说明

图 3-4 显示区域

- (1) 测量控制参数区域显示了测量所用的一些参数设置
- (2) 显示页面菜单区域这个区域显示了当前显示页面的名称
- (3) 文件菜单区域反白条移到文件菜单可以进行文件的调用或存储
- (4) 工具菜单区域某些显示页面的特殊功能,通过这个菜单执行
- (5) 测量结果显示区域 显示当前被测件的测量结果
- (6) 软键功能区域用于显示对应软键的相应功能或参数

3.4 主菜单按键

本仪器有三个主菜单按键用来选择液晶屏的显示页面,每个菜单下还有几个可选的显示页面。

1、 **DISPLAY** 菜单按键

这个菜单按键包括以下5个显示页面:

■ MeasDisplay (元件测量显示页面)

■ BinNo. Disp (档号显示页面)

■ Bal Display (平衡测试页面)

■ B-Bin Disp(平衡测试档号显示页面)

■ DoubleFreqMea (双频平衡测试页面)

这些页面用来显示测量结果和分选结果。当按下 **DISPLAY** 菜单按键时,LCD 显示屏显示 MeasDisplay 页面,使用软键来选择其它页面,反白条位于显示页面菜单区域。开机默认的显示页面是元件测量显示页面(MeasDisplay)。

2、 SETUP 菜单按键

这个菜单按键包含以下3个显示页面:

- Meas Setup (测量设置页面)
- Limit Table (极限列表设置页面)
- B-Lim Table (平衡极限列表设置页面)

这些页面用来设置各种测量参数和档比较器极限参数。当按下 SETUP 菜单按键时, LCD 显示屏显示 Meas Setup 页面,使用软键来选择其它页面,反白条位于显示页面菜单 区域。

3、 SYSTEM 菜单按键

这个菜单按键包含以下4个显示页面:

- System Config (系统配置页面)
- Files List (文件列表页面)
- Self Test (自测试页面)
- System Debug (系统诊断与调试页面)

这些页面主要用来设置一些系统状态信息和接口信息。当按下 <u>SYSTEM</u> 菜单按键时, LCD 显示屏显示 System Config 页面,使用软键来选择其它页面,反白条位于显示页面菜 单区域。

i 注意:自测试页面和系统调试功能未向用户开放。

3.5 显示页面概要

MeasDisplay (元件测量显示页面)

这个页面显示了测量结果和一些可以设置的状态参数。开机默认进入此页面。

BinNo. Disp(档号显示页面)

这个页面显示档比较结果,一些测量状态参数,测量结果和档比较器的开关设定信息。档 号以大字符显示,测量结果以小字符显示。 TH2817CX 使用说明书

Bal Display(平衡测试显示页面)

这个页面显示了平衡测量结果和一些可以设置的状态参数。

B-Bin Disp(平衡测量档号显示页面)

这个页面显示了平衡测量档比较结果,一些测量状态参数,测量结果和档比较器的开关设 定信息。档号以大字符显示,测量结果以小字符显示。

DoubleFreqMea (双频平衡测量显示页面)

这个页面显示了两个频率对平衡器件进行测量的结果和比较合格信息以及一些测量状态参数。

Meas Setup (测量设置页面)

这个页面显示了所有可以设定的测量状态参数。在这个页面不进行测量。如果要使用设置 好的参数进行测量,请按 **DISPLAY** 菜单按键。

Limit Table(极限列表设置页面)

这个页面显示档比较器的列表设置信息,包括档极限值,标称值等参数。该页面不能显示 比较结果,请到 BinNo. Disp 页面查看比较结果。

B-Lim Table(平衡极限列表设置页面)

这个页面显示平衡测试极限列表设置信息,包括极限值,标称值等参数,该页面不能显示 平衡测试比较结果,请到 B-Bin Disp 页面查看平衡比较结果。

System Config (系统配置页面)

这个页面显示一些系统状态信息和接口状态信息,如 LCD 对比度,讯响等。

Files List(文件列表页面)

这个页面显示文件列表信息,如文件名,最大文件数,已使用文件数等。可以在这个页面 进行文件加载、改名及删除等操作。

Self Test(自检页面) 此页面功能未向用户开放。

System Debug(系统诊断与调试) 此页面功能未向用户开放。

第四章 使用说明

4.1 开机

- 1) 接通电源,按下电源开关启动仪器。
- 2) 仪器自检后进入测试状态,如图 4-1 所示,实际情况有可能不同。

FUN1: Cp FUN2: D	<measdisplay></measdisplay>	File Tools
FRQ: 1.0kHz	Cn :	326, 54nF
LEV: 1.0V RANGE:AUTO	р. р.	0_0061
SPEED: MED	D.	0.0001
ZERO : OFF	2F B-Bin	BAL BinNo LCR

图 4-1 测试状态示意图

4.2 显示画面说明

4.2.1 元件测量显示页面

按下**DISPLAY**菜单按键,进入元件测量显示画面(MeasDisplay),该页面以大字符显示测量结果,同时显示一些可以设置的测量控制参数,这些参数是: 主参数(FUN1),副参数(FUN2),测试频率(FRQ),测试电平(LEV),量程(RANGE),测量速度(SPEED),清零(ZERO),文件(File),工具(Tools)。

FUN1: Cp FIN2: D	<measdisplay></measdisplay>	File Tools
FRQ: 1.0kHz	Cn ·	326. 54nF
LEV: 1.0V	p .	020. 0 mi
RANGE: AUTO	D •	0 0061
SPEED: MED		0.0001
ZERO : OFF	2F B-Bin	BAL BinNo LCR

图 4-2 元件测量显示页面

图 4—3 元件测量页面的可用软键

4.2.1.1 <MeasDisplay>

该区域显示了当前页面的名称。使用软键切换页面,可以切换的页面有MeasDisplay (元件测量显示页面),BinNo.Disp(档号显示页面),Bal Display(平衡测试页面),B-Bin Disp(平衡测试档号显示页面),DoubleFreqMea(双频平衡测试页面)。

4.2.1.2 FUN1 (测试主参数)

仪器主参数分为三组,如果所需要的测试主参数没有显示,按软键 **NEXT** 选择另外一组测试参数直到该参数已显示。更改主参数后,副参数也随着改变:

```
Ls, Lp — Q;
Cs, Cp — D;
Rs, Rp — X;
Z — θr(弧度);
L2A, L2B — N
更改参数后,自动 LCZ 功能将被取消。
```

4.2.1.3 FUN2 (测试副参数)

因主参数的不同,所支持的副参数也不一样:

主参数类型	可选择的副参数类型
Cs, Cp, Z, Rs, Rp	θ°(角度), θr(弧度), R, X, Q, D
Ls, Lp	θ°(角度), θr(弧度), R, X, Q, D, DCR
L2A, L2B	N, 1/N, M, R2

更改参数后,自动 LCZ 功能将被取消。

4.2.1.4 FRQ (测试频率)

TH2817CX 提供以下常用测试频率: 50Hz, 60Hz, 100Hz, 120Hz, 1kHz, 10kHz, 20kHz, 40kHz, 50kHz, 100kHz。

反白条移到 FRQ 区域,然后就能使用下面几个软键选择所需要的频率点。

■ ①(11)、①(--) 频率快调键,使用这两个软键可以方便的选择以下频率: 50Hz、

100Hz 1kHz 10kHz 100kHz

■ ^{↑(+)}、^{↓(-)} 频率细调软键,可以按顺序选择仪器提供的 10 个测试频率。

4.2.1.5 LEV (测试电平)

测试电平设置了内部振荡器产生的测试正弦波的有效值。 TH2817CX 提供以下 3 个常用测试信号电压: 0.1V, 0.3V, 1V。 反白条移到 LEV 区域进行测试电平的选择。

- ①(11)、①(--) 电平快调软键,使用这两个软键可以在0.1V和1V两个电平间切换。
- ^{↑(+)}、^{↓(-)} 电平细调软键,在 0.1V、0.3V、1V 之间切换。

4.2.1.6 RANGE (量程)

TH2817CX 共分九个量程: 10 Ω, 30 Ω, 100 Ω, 300 Ω, 1k Ω, 3k Ω, 10k Ω, 30k Ω, 100k。根据被测件 (DUT) 的阻抗进行量程选择。量程及对应的测量范围参见附表。

量程的定义是概念性的,即量程的测量界限是模糊的,没有绝对的界限。仪器工作在

自动量程时,可以找到最合适的量程进行测量,在大多数应用中,推荐使用自动量程方式, 以避免因量程选择错误导致不正确的测量。

在有些特定场合,则应锁定量程进行测量,如同品种的批量测试及分选测试,可利于 效率、速度及稳定性的提高。电感的偏流叠加测试中,最好能锁定在合适的量程上测量。

锁定量程的合理方法是先让仪器自动测量,在测出准确稳定值的情况下再锁定量程, 或根据被测件阻抗小参考下表选择。

量程号	量程定义	测量范围
8	10 Ω	$0 \sim 10 \Omega$
7	30 Ω	$10\Omega{\sim}70\Omega$
6	100 Ω	$70\Omega{\sim}300\Omega$
5	300 Ω	$300 \Omega \sim 1 \mathrm{k} \Omega$
4	1k Ω	$1k \Omega \sim 3k \Omega$
3	3 k Ω	$3k \Omega \sim 10k \Omega$
2	$10 \mathrm{k} \Omega$	$10k \Omega \sim 30k \Omega$
1	30k Ω	$30k \Omega \sim 100k \Omega$
0	100k Ω	$100 \mathrm{k}\Omega\sim\infty$

LCR 量程:

i 注意: 量程的分界并没有严格的定义;

i 注意: 自频率 20kHz 以上,不使用 0 号量程。

反白条移到 RANGE 区域进行量程的选择。

■ AUTO 这个软键用来设置为自动量程方式

■ HOLD 使用这个软键把自动量程方式转为锁定量程方式。在锁定量程方式下,量程 是固定的,在量程显示区域显示当前的固定量程。

■ ^{↑(+)} 这个软键用来在锁定量程方式下递增选择量程

■ ↓(-) 这个软键用来在锁定量程方式下递减选择量程

TH2817CX 还具有直流电阻测试功能,直流电阻的量程定义除上述外,还扩展了一个 量程,测量范围稍有不同。

量程号	量程定义	测量范围
9	3 Ω	0~3Ω
8	10 Ω	3~10 Ω
7	30 Ω	$10\Omega{\sim}100\Omega$
6	100 Ω	$100\Omega\sim$ 300Ω
5	300 Ω	$300\Omega \sim 1k\Omega$
4	1k Ω	$1k \Omega \sim 3k \Omega$

DCR 量程:

3	3k Ω	$3k \Omega \sim 10k \Omega$
2	$10 \mathrm{k} \Omega$	$10k \Omega \sim 30k \Omega$
1	30k Ω	$30\mathrm{k}\Omega{\sim}100\mathrm{k}\Omega$
0	$100 \mathrm{k} \Omega$	$100 \mathrm{k}\Omega \sim 2\mathrm{M}\Omega$

如果要使 DCR 量程可见,并且可以手动更改,可在 Meas Setup (测量设置页面)修改量程模式。参见本章测量设置的有关内容。

自动及锁定对 LCR 和 DCR 量程都是同时有效的。

4.2.1.7 SPEED (测量速度)

仪器提供 FAST (快速), MED (中速), SLOW (慢速)3种测试速度供用户选择。

快速: 大约 20 次/秒, 测量速度快, 但精度及稳定性下降。

中速:大约10次/秒,是精度,稳定性及速度的最优组合。

慢速: 大约2次/秒, 可获得较高的测量准确度和稳定性。

使用方向键移动反白条到 SPEED 区域,出现 SLOW、MED、FAST 三个软键,按下 软键选择需要的测量速度。

4.2.1.8 ZERO(清零)

开路清零功能能够消除测试线,测试夹具与被测元件并联的杂散导纳(G,B)如杂 散电容的影响。

短路清零功能能够消除测试线与测试夹具与被测元件串联的剩余阻抗如引线电阻或 引线电感的影响。

仪器可进行开路/短路点频、全频清零。

单频清零即只对当前设定的测试频率进行清零,而扫频清零则对所支持的典型频率逐 一进行清零。

清零状态一共有7个功能,通过 NEXT 软键选择所需要的功能。

- OpSWP 按下此键,将进行扫频清零,在清零过程中,ESC 软键可用,用来终止扫频 开路清零。
- OpCLR 按下此键,对当前频率进行一次单频开路清零,按 ESC 软键可终止进程。
- OFF 按下这个软键,关闭清零校正,表示在以后的测量中不使用用户开路和短路 校正数据。
- ON 按下这个软键,打开清零校正,表示在以后的测量中使用用户开路和短路校 正数据
- ShSWP 按下这个软键,将进行扫频短路清零,在清零过程中,ESC 软键可用,用来 终止扫频短路清零。
- ShCLR 按下这个软键,对当前频率进行一次单频短路清零,按ESC软键终止进程。

■ ShDCR 按下这个软键,执行直流电阻短路清零。

4.2.1.9 Tools (工具)

反白条移动到 Tools 区域,出现键盘锁软键 KEY回,按下软键,键盘将被锁定,页面 上同时显示键盘被锁定的信息"KeyLocked!"。

键盘锁定后,除解锁软键外其它按键都不能使用,如果要解锁,按下解锁软键 KEYL, 就能恢复使用。

4.2.1.10 File (文件)

用户可以将设定的参数以文件的形式存入仪器内部非易失性存储器。当需要使用同样 的设定时,用户无需重新设定这些参数,只需加载相应的文件,就可以得到上次设定的参 数,从而大大节省了用户重复设定参数的时间。一共可以设定 12 组文件,用户文件信息 可以在文件列表中查看及管理。

文件中保存了除开路、短路校正外的用户设置的所有测量参数、极限设置参数,但不 包括系统配置参数。反白条在文件区域时,显示两个操作软键:

■ SAVE 保存当前设置为一个文件。显示屏上提示输入文件号(0—11),输入文件号 后按 ENTER 键提示输入文件名,输入文件名后按 ENTER 即完成文件的保存。如果为输 入文件名直接按 ENTER 键,文件以<Unnamed>为缺省名。如果中途放弃操作,按下 ESC 软键退出保存文件。文件名以大写字母 A—Z,数字 0—9,特殊字符% ^ & *,:;?+= ()! @ # \$等组成。

输入规则:当按下某一数字键时,如果该键对应的字母(或特殊字符)已经显示在软 键区,则输入该数字,否则切换软键功能而不输入数字;按软键时,将输入软键对应的大 写字母或特殊字符。

i 注意: 仪器在覆盖已存在的文件记录时并不提示。

■ LOAD 用来加载一个文件,即从内部非易失性存储器调用一组参数设置。按下软键 后出现一个文件列表框,列表框显示了所有存在的文件名,使用上下方向键选择文件,同 时框内第一行显示相应文件的文件号,选中需要的文件,按下 OK 软键加载此文件,如果 想退出加载文件,按 ESC 软键。

Load File:No.1
CBBI3-325J
<unnamed></unnamed>
TH2817CX

图 4—4 文件加载列表框

4.2.2 档号显示页面

按 **DISPLAY** 菜单按键,然后按软键 **BinNo**,进入档号显示页面。在这个页面上以大 字符显示档分选结果,以小字符显示测量结果,可以设定的测量控制参数有:比较器开关 ON/OFF (COMP),附属档开关 ON/OFF (AUX),文件 (File),工具 (Tools)。还有一些 参数不可设定,但可以在测量设置页面或元件测量显示页面上设置。这些参数有:主参数 (FUN1)、副参数 (FUN2)、测试频率 (FRQ)、测试电平 (LEV)、量程 (RANGE)、测 试速度 (SPEED)、清零 (ZERO)。

图 4—6 档号显示页面的可用软键

4.2.2.1 COMP(比较器开关)

本仪器可进行多档分选,并能从 HANDLER 接口输出分选信号,要使用此项功能,必须打开比较器开关。

移动反白条到 COMP 区域,显示有两个软键: ON、OFF,通过选择软键来设置档比 较器(COMP)的开(ON)和关(OFF)。

4.2.2.2 AUX(附属档开关)

主参数满足极限列表而副参数不合格时,可以归类为附属档,也可以直接归为不合格 档。如果要使用附属档,必须打开附属档开关。

移动反白条到 AUX 区域,显示有两个软键: ON、OFF,通过选择软键来设置附属档 (AUX)的开 (ON)和关 (OFF)。

.当附属档(AUX)关闭后,则一旦副参数不合格,即归为不合格档(OUT)。

4.2.2.3 File (文件)

移动反白条到文件区域,显示 LOAD、SAVE 两个软键。设定好各项测量控制参数,按下 SAVE 软键保存这些参数为一个文件存入仪器内部非易失性存储器。如果想加载一个 文件,按下 LOAD 软键,从弹出的文件列表框中选择需要的文件,按下 OK 软键即可。

Tools(工具)

工具区域下有一个软键 KEY^①,按下软键,键盘将被锁定,键盘锁定后,除解锁软键 外其它键都不能使用,如果要解锁,按下解锁软键 KEY³,键盘就能恢复使用。

4.2.3 平衡测试显示页面

按下 **DISPLAY** 菜单按键,然后按 **BAL** 软键进入平衡测试显示页面。该页面可以设置的参数有: 主参数 (FUN1),副参数 (FUN2),测试频率 (FRQ),测试电平 (LEV),测试量程 (RANGE),测试速度 (SPEED),清零 (ZERO),文件 (File),工具 (Tools)。

FUN1: LsA FUN2: LsB	<bal dispaly=""> File Tools</bal>
FRQ: 1.0kHz	LsA: 10.803mH
LEV: 1. OV RANGE: AUTO	LsB: 10.802mH
SPEED: MED ZERO : OFF	2F B-Bin BAL BinNo LCR

图 4-7 平衡测试显示页面

4.2.3.1 FUN1(主参数)

平衡测试支持的主参数有 Ls, Lp, Cs, Cp, Rs, Rp, Z, R2。分为两组显示,移动 反白条到 FUN1 显示区域,如果所需要的测试参数没有显示,按 NEXT 软键选择另外一组 测试参数显示。

4.2.3.2 FUN2(副参数)

平衡测试页面中,副参数有百分比显示(Δ %),绝对值显示(Δ ABS),直读显示(DIR) 副参数百分比显示值 = $\frac{B-A}{A}$ ×100% 副参数绝对值显示值 = B-A副参数直读显示值 = B 其中: A表示 Hpot—Lpot 端测量值 B表示 Hcur—Lcur 端测量值 移动反白条到 FUN2 显示区域,显示 Δ %, Δ ABS, DIR 软键,选择合适的显示方式。

4.2.3.3 FRQ (测试频率)

测试频率的设置请参阅 4.2.1.4 内容

4.2.3.4 LEV (测试电平)

测试电平的设置请参阅 4.2.1.5 内容

4.2.3.5 RANGE (量程)

量程的设置请参阅 4.2.1.6 内容

4.2.3.6 SPEED (测试速度)

测试速度的设置请参阅 4.2.1.7 内容

4.2.3.7 ZERO (清零)

清零操作请参阅 4.2.1.8 内容

1 注意: 平衡测试显示页面(Bal Display)下的清零与元件测量显示页面(MeasDisplay)的 清零不同。用户在平衡显示页面测量平衡器件时,请使用平衡测试页面(Bal Display)下 的开路 / 短路 / DCR 清零。

4.2.3.8 File (文件)

文件操作请参阅 4.2.1.10 内容

4.2.3.9 Tools (工具)

工具操作请参阅 4.2.1.9 内容

4.2.4 平衡测量档号显示页面

按下 **DISPLAY** 菜单按键,然后按 **B-Bin** 软键进入平衡测量档号显示页面。仪器有 3 个合格挡(BIN1、BIN2、BIN3),1个不合格档(OUT),具体比较过程可参阅 4.2.8 节。 该页面可以设置的参数有:比较器开关(COMP),文件(File),工具(Tools)。

图 4—10 平衡测量档号显示页面的可用软键

4.2.4.1 COMP(比较器开关)

要使用平衡测量档号显示页面(B-Bin Disp)档比较器,必须打开比较器开关。

移动反白条到 COMP 区域,显示有两个软键: ON、OFF,通过选择软键来设置档比 较器(COMP)的开(ON)和关(OFF)。

4.2.4.2 File (文件)

文件操作请参阅 4.2.1.10 内容

4.2.4.3 Tools(工具)

工具操作请参阅 4.2.1.9 内容

4.2.5 双频平衡测量显示页面

按下 **DISPLAY** 菜单按键, 然后按 2F 软键进入平衡测量显示页面。该测量显示页面可 以用两个频率对被测件进行测量, 如果比较器开关打开, 则给出分选结果。该页面可以设 置的参数有: 频率, 文件 (File), 工具 (Tools)。

双频测量下,比较过程如下图:

图 4—11 双频平衡测量比较过程

i 注意:在双频测量时,HANDLER 接口的比较结果只输出 BIN1、OUT 两个信号,
BIN1 表示合格,OUT 表示不合格。

MODE:	SEQ	<doub1< th=""><th>eFreqMea</th><th>a≥ Fi</th><th>ile</th><th>Tools</th></doub1<>	eFreqMea	a≥ Fi	ile	Tools
FUN1:	Cp	[FREQ]	LsA:	H	LsB:H	[C]
FUN2:	D	10kHz	11.473	ōm 1	11.478m	P1
LEV:	1. OV	100kHz	10.733	3m - 1	0.722m	P1
RANGE: SPEED:	AUTO MED		PASS			
ZERO ;	OFF	2F	B-Bin	BAL	BinNo	LCR
	L .	±			+	

不可设定的参数 可以设定的参数 测量结果显示区域

图 4—12 双频平衡测量显示页面

图 4—13 双频平衡测量显示页面的可用软键

4.2.5.1 频率

在双频平衡测量显示页面可以设置两个频率,具体的频率设置请参阅 4.2.1.4 内容

4.2.5.2 File (文件)

文件操作请参阅 4.2.1.10 内容

4.2.5.3 Tools(工具)

工具操作请参阅 4.2.1.9 内容

4.2.6 测量设置页面

按 <u>SETUP</u> 菜单按键,进入测量设置页面。这个页面可以设置的控制参数有:测量主参数 (FUN1),测量副参数(FUN2),测试频率(FRQ),测试电平(LEV),量程(RANGE), 测量速度(SPEED),显示模式(DISPM),触发方式(TRIG),输出内阻(INT_R),延时 (DELAY),平均次数(AVG),自动选择参数(ALCZ),偏置模式(BIASM),偏置源(BIAS), 放电(DCHR),量程类型(RANGE),电缆长度(CABLE)。

图 4—15 测量设置页面的可用软键

4.2.6.1 TRIG (触发方式)

仪器只有在接受到一个触发信号后才能启动一次测量。

本仪器共有四种触发方式: INT(内部), EXT(外部), MAN(手动), BUS(总线)。 仪器只接受当前触发方式下的触发信号, 触发信号也只有在 DISPLAY 下的测量页面才有效。

- 内部触发(INT),由仪器内部自动生成,因而可以连续不断的测量。
- 手动触发 (MAN), 当按面板上的 TRIGGER 键时, 即触发一次测量。
- 外部触发(EXT),由外部经 HANDLER 接口板输入一个宽度大于 10µs 的 TTL 脉冲, 可选择上升沿或下降沿触发(参见系统设置中触发沿 TRIG EDGE 相关内容)。
- 总线触发(BUS),通过 RS232 或 GPIB 通讯命令触发测量。此方式只能由总线命令 设定,而不能通过面板按键设定。

移动反白条到 TRIG 区域,有3个软键可以选择: INT、MAN、EXT。如果要设定总 线触发模式,则通过 RS-232C 或 GPIB 接口发送总线命令给仪器。

F提示: 设置总线触发 BUS 时,可通过命令"TRIG: SOUR BUS"实现。参见"命 令参考"相关内容。

4.2.6.2 INT_R (输出内阻)

内阻是测试信号源的输出阻抗,本仪器提供两种内阻选择: 100 Ω 和 30 Ω。移动反白 条到 INT_R 区域,显示 100 Ω 和 30 Ω 两个软键,选择所需要的内阻。

设定了测试电平V_s后,流过被测件(DUT)的测试电流I_s由DUT的阻抗Z_x=R_x+jX_x-和源内阻R_s共同决定,即:

$$Is = \frac{Vs}{|Rs + Rx + jXx|}$$

由于有些被测件如高磁导的磁芯电感器的测量值会因测试电流大小不同而不同,即具 有电流敏感性,所以在同样电平的情况下,不同的内阻必然会导致不同的测量结果,输出 内阻可选择功能是为了让电流敏感器件获得相对一致的测量结果。对于非电流敏感的特别 是低阻抗的测试件,我们推荐使用 30 Ω 源内阻。

偏流模式下,内阻固定为100Ω。

4.2.6.3 DELAY(延时)

仪器在本次测量结束后,延时指定时间后才可继续下次测量。 测量后的延时过程中,有效触发源产生的触发信号有效。 如果设置了 HANDLER 接口信号清除,则在延时后将清除 HANDLER 接口上的比较 器输出信号(参见"系统设置"中相关内容)。

测量延时范围为 0~60000ms。

移动反白条到 DELAY 区域,使用数字键输入延时的时间。当键入第一个数字时,软 键显示区域显示下面三个软键:

■ ESC 退出延时时间的设定。

■ msec 和 sec 选择输入数据的单位,可以代替 ENTER 使用。

4.2.6.4 AVG (平均次数)

求平均是数字滤波器的一种,"次数"就是滤波器的深度。其目的是进行多次测量, 取平均结果为当前测量值,这样可以提高测量结果的稳定性和可靠性。平均次数的范围为 1—255,以1步进,由数字键输入。

移动饭白条到 AVG 区域,使用数字键输入平均次数。键入数字时,可用 ESC 软键退出平均次数的设定。输入所需的平均次数,按下 ENTER 键。

4.2.6.5 ALCZ(自动 LCZ)

TH2817CX 可根据 DUT 阻抗性质自动选择 L、C、Z 以及串并联等效方式,适合于未 知及混合元件的自动识别与测量。

自动模式下, 主副参数根据阻抗角选择:

- $\theta > 5^{\circ}$ by \to L-Q
- $\theta < -5^{\circ}$ by \rightarrow C-D
- 其它值时, \rightarrow Z- θ

串并联等效方式按阻抗选择:

 $Z > 1k\Omega$ 时, \rightarrow 并联方式

Z < 1kΩ时, → 串联方式

类似于开路或短路状态时,保持原参数不变。

如果用户更改主副参数,则自动 LCZ 功能即被取消。

移动反白条到 ALCZ 区域,显示 ON 和 OFF 两个软键,选择打开(ON)或关闭(OFF) 自动 LCZ 功能。

4.2.6.6 BIASM(偏置模式)

为了客观评价电感值和电容值的参数,电感器、电容器必须在实际条件下进行测试, 比如线圈中会有直流电流流过,电容器两端有直流电压。

与客观使用条件取得近似的测试解决方案就是在交流测试的同时,给电感器施加直流 偏流,给电容器施加直流偏压。

32

本仪器可提供-5V~+5V的内偏压或-50mA~+50mA的内偏流。 偏流大小由偏压值 Vb,源内阻 Rs 及被测件直流电阻 Rx 确定:

$$Ib = \frac{Vb}{Rs + Rx}$$

Vb 为偏压值, Rs 为源内阻 (100 Ω), Rx 为 DUT 直流电阻。

使用偏置前应首先选择偏置模式,移动反白条到 BIASM 区域,显示两个软键,用户可以选择合适的偏置模式。

■ VOLT 直流偏压模式

■ CURR 直流偏流模式

i 注意: 对电感、变压器进行偏流测试时,如不选择偏流模式,可能导致无法正常测量!

4.2.6.7 BIAS (偏置源)

TH2817CX 有如下偏置源供选择:

- OFF: 0V 偏置源;
- +2DC: 内部固定+2V 偏置源;
- -2DC: 内部固定-2V 偏置源;

■ EXDC: 内部可调-5V~+5V 偏置源。

当选用"EXDCV"时,实际偏置电压大小可由后面板的偏压调节电位器进行调节,调 节时可用直流电压表在偏置电压监测端子上实时测量。

移动反白条到 BIAS 区域,显示 OFF、EXDC、-2DC、+2DC,选择合适的偏置源。

4.2.6.8 DCHR(放电测试)

当使用外部偏置电流源时,测试信号必需经隔离电容才能施加到 DUT 上,隔离电容 上的积累电荷及充放电不利于测量的快速性和稳定性,本仪器在测试端内置放电回路,可 有效减小隔离耦合电容对测量的影响,如下图所示。

图 4—16 低阻抗放电回路 33

打开放电测试功能后,每次测量多占用 10~20ms 的时间。 移动反白条到 DCHR 区域,显示两个软键:

- ON 打开放电测试
- OFF 关闭放电测试。

4.2.6.9 RANGE (量程类型)

TH2817CX 具有直流电阻测试功能,因而量程分 LCR 量程和 DCR 量程,量程显示与手动操作只对其中一种有效。

但量程自动和手动方式对 LCR 量程和 DCR 量程均是同时有效的。

移动反白条到 RANGE 区域,显示两个软键:

- LCR LCR 量程
- DCR DCR 量程

4.2.6.10 CABLE(电缆长度)

高频(10kHz 以上)或高阻抗(10kΩ以上)测量时,电缆线的长短对测试精度的影响不容忽视,即使经过开路及短路清零也不能很好地消除测试线带来的误差。通过电缆长度校正功能,可有效补偿测试线带来的误差。

本仪器分标准 0m 校正, 1m 校正两种选择:

- 0m 使用端面夹具进行测量
- 1m 使用 TH26009, TH26011 等带 1m 电缆的测试线进行测量

4.2.6.11 DISPM(显示方式)

常规显示方式分为:

■ 直读显示 (DIR) —— 实际测量值;

■ 绝对偏差显示(**⊿ABS**) —— 测量值与标称值的绝对偏差

■ 百分比偏差显示(⊿%) —— 测量值与标称值的百分比偏差

显示方式只对主参数有作用, 副参数不受影响。

显示方式的选择与主参数公差模式相关

移动反白条到 DISPM 区域,显示三个软键: ⊿%, ⊿ABS, DIR。选择合适的显示方式。

1 注意:显示方式只对元件测量显示页面(MeasDisplay),档号显示页面(BinNo. Disp)有作用,其它测量显示页面不受影响。

4.2.7 极限列表设置页面

比较器功能是将当前实测结果与预设的一组数据限进行比较,从而作出合格(包括合格所在的档位)与不合格的判断,并可从 HANDLER 接口输出比较结果,以控制机械分选系统。

本仪器可设置3档主参数极限数据,1档副参数极限数据。

比较结果可在 HANDLER 接口输出:

/BIN1/BIN2/BIN3:	合格档;
/AUX:	附属档;
/0UT:	不合格档;
/PHI :	主参数偏高;
/PL0:	主参数偏低;
/SREJ:	副参数不合格。

比较结果同时还可以从蜂鸣器输出,蜂鸣器可以设定为合格档、附属档或不合格档报 警。详情参见系统设置有关内容。

比较器的比较过程及分档示意:

图 4—17 比较器比较过程示意

使用档比较器功能应首先设定极限列表,如果用户未设定极限表中的数据,其值为0。 按 SETUP 菜单按键,然后按软键 LIMIT,进入极限列表设置页面。这个页面上可以 设定的参数有:标称值(NOMINAL),变压器匝比参考值(N-REF),主参数公差模式 (MODE),比较器开关 ON/OFF(COMP),附属档开关 ON/OFF(AUX),极限值

TH2817CX 使用说明书

(LOW/HIGH), 文件 (File), Tools (工具)。下面是极限列表设置页面:

NOMINAL:	<limit< th=""><th>Table></th><th>Fil</th><th>e 1</th><th>Cools</th></limit<>	Table>	Fil	e 1	Cools
217.26nF	[BIN]	[]	.0W]	ΕH	IGH]
N-REF:	1	-0.	. 05%	0.	05%
0.0000	2	-0.	. 07%	0.	07%
MODE: %TOL	3	-0.	. 09%	0.	09%
COMP: OFF	2nd	0.0	001	0.00	006
AUX : OFF		H	3-LIM	LIMIT	SETUP

图 4—18 极限列表设置页面

图 4—19 极限列表设置页面的可用软键

4.2.7.1 NOMINAL (标称值)

标称值是相对于主参数而言,副参数没有标称值。 移动反白条到 NOMINAL 区域,使用数字键和单位软键输入标称值。

4.2.7.2 N-REF(匝比参考值)

N—REF用于设定变压器初次级的圈数。 设定值小于等于1时无效,N及1/N表示匝比,设定值大于1时,N及1/N显示为变 压器的圈数。具体表示为初级圈数还是次级圈数依主参数是 L2A 还是 L2B 决定。 例如:

主参数为 L2A 时, 1/N 显示为 N-REF, 表示次级圈数, N 显示为初级圈数。

主参数为 L2B 时, 1/N 显示为 N-REF, 表示初级圈数, N 显示为次级圈数。

变压器初次级的定义依赖于 TH2817CX 端子与变压器连接方式,请参阅第五章相关说明。

4.2.7.3 MDE(主参数公差模式)

主参数的上下限可以用绝对值公差(±TOL)和百分比公差(%TOL)两种形式。

◆ ±TOL(绝对公差方式)

当前被测件的测量值减去标称值后再与上下限进行比较。即:

 $\pm TOL = X - Y$

其中: X 为当前被测件的测量值。

Y 为设定的标称值。

◆ %TOL(百分比公差方式)

当前被测件的测量值与标称值之差的百分比与上下限进行比较。即:

$$\% TOL = \frac{X - Y}{Y} \times 100\%$$

其中: X 为当前被测件的测量值。

Y 为设定的标称值。

移动反白条到 MODE 区域,显示是 ±TOL 和%TOL 两个软键。按下 ±TOL,极限列 表中的数值是绝对值公差形式;按下%TOL,则为百分比公差模式。

4.2.7.4 COMP(比较器开关)

要使用比较器功能,必须打开比较器开关。

移动反白条到 COMP 区域,显示有两个软键: ON、OFF,通过选择软键来设置档比 较器(COMP)的开(ON)或关(OFF),也可以在平衡极限设置页面、档号显示页面或 平衡测试档号显示页面设定比较器的开关。

4.2.7.5 AUX (附属档开关)

主参数合格而副参数不合格时归类为附属档,但要求打开附属档开关。

移动反白条到 AUX 区域,显示有两个软键: ON、OFF,通过选择软键来设置附属档 (AUX)的开(ON)或关(OFF),也可以在档号显示页面设定附属档的开关。

4.2.7.6 LOW/HIGH(上,下极限)

多档分选的档位与极限表的上下限关系如下图所示

图 4-20 档位与极限

极限设置即公差设置,它包括上极限设置和下极限设置。

在设置极限列表时,从 BIN1—BIN3 要按照从较窄范围到较宽范围依次增大的原则, 如果 BIN1 具有较宽范围的极限,那么所有合格的被测件将被分选进 BIN1, BIN1 之后的 设置失去意义。在极限列表中,列表下限可以大于标称值,上限也可以小于标称值,但要 注意下限要小于等于上限,如果下限大于上限,将会显示警告信息"Warning: Low > High", 这样仪器不会把被测件分选进这个档。

移动反白条到 BIN1 LOW 区域,使用数字键输入数据,当输入一个数字时,以下单位 软件可用: p、n、µ、m、k、M。完成输入后,如果原先内容为空,仪器将自动填充上极 限(或下极限),原则是下限为负,上限为正,若需修改,移动反白条到需要修改的位置 后输入新的数据即可。如上依次输入其它极限数据。此外,值得注意的是: 2nd (副参数) 上下限设置的数据只能是绝对值形式,而不是任何基于标称值的公差形式,因为副参数没 有标称值。副参数只能设一档数据。

可以使用 DEL—软键删除当前档的极限数据。

4.2.7.7 File (文件)

移动反白条到文件区域,显示 LOAD、SAVE 两个软键。设定好各项测量控制参数, 按下 SAVE 软键保存这些参数为一个文件存入仪器内部非易失性存储器。如果想加载一个 文件,按下 LOAD 软键,从弹出的文件列表框中选择需要的文件,按下 OK 软键即可。

具体参阅 4.2.1.10 内容

4.2.7.8 Tools (工具)

移动反白条到工具区域,显示一个 CLEAR 软键,使用这个软键可以清除极限列表。 按下 CLEAR 软键,屏幕上会显示信息"Confirm: CLR Table?",并且显示两个软键:YES 和 NO,按下 YES,清除极限列表。

4.2.8 平衡极限列表设置页面

本仪器可设置 3 档主参数极限数据, 1 档副参数极限数据。比较结果可在 HANDLER 接口输出,具体接口信号参阅 4.2.7

平衡比较器的比较过程及分档示意如下图:

图 4—21 比较器比较过程示意

使用平衡档比较器功能应首先设定平衡极限列表,如果用户未设定平衡极限表中的数据,其值为0。

按 <u>SETUP</u>菜单按键,然后按软键 B—LIM,进入平衡极限列表设置页面。这个页面 上可以设定的参数有:标称值(NOMINAL),副参数公差模式(MODE),比较器开关ON/OFF (COMP),极限值(LOW/HIGH),文件(File),Tools(工具)。下面是极限列表设置页 面:

NOMINAL:	<b-lim< th=""><th>Table> Fil</th><th>le Tools</th></b-lim<>	Table> Fil	le Tools
10.000mH	[BIN]	[LOW]	[HIGH]
	1	-1.000mH	1.0000mH
	2	-2.000mH	2.0000mH
	3	-3.000mH	 0000mH
MODE: ±TOL	2nd	9. 0000mH	11.000mH
COMP: OFF		B-LIM	LIMIT SETUP

图 4—22 平衡极限列表设置页面

图 4—23 平衡极限列表设置页面的可用软键

4.2.8.1 NOMINAL (标称值)

标称值是相对于主参数而言,副参数没有标称值。 移动反白条到 NOMINAL 区域,使用数字键和单位软键输入标称值。

4.2.8.2 MDE (副参数公差模式)

副参数的上下限可以用绝对值公差(±TOL)和百分比公差(%TOL)两种形式。

■ ±TOL(绝对公差方式)

当前 B 组的测量值减去 A 组的测量值后再与副参数上下限进行比较。即:

$$\pm TOL = B - A$$

其中: A 为当前被测件的 A 组(Hpot—Lpot)测量值。

B为当前被测件的B组(Hcur—Lcur)测量值。

■ %TOL (百分比公差方式)

当前 B 组的测量值与 A 组的测量值之差的百分比与副参数上下限进行比较。即:

$$\% TOL = \frac{B-A}{A} \times 100\%$$

其中: A 为当前被测件的 A 组(Hpot-Lpot)测量值。

B为当前被测件的B组(Hcur-Lcur)测量值。

移动反白条到 MODE 区域,显示是±TOL 和%TOL 两个软键。按下±TOL,极限列 表中的 2nd 数值是绝对值公差形式;按下%TOL,则为百分比公差模式。

4.2.8.3 COMP(比较器开关)

要使用比较器功能,必须打开比较器开关。

移动反白条到 COMP 区域,显示有两个软键:ON、OFF,通过选择软键来设置平衡 极限档比较器(COMP)的开(ON)或关(OFF),也可以在极限设置页面、档号显示页 面或平衡测试档号显示页面设定比较器的开关。

4.2.8.4 LOW/HIGH(上、下极限)

平衡测试多档分选的档位与平衡极限表的上下限关系如图 4—19

移动反白条到 BIN1 区域,使用数字键输入数据,当输入一个数字时,以下单位软键 可用: p, n, µ, m, k, M。完成输入后,如果原先内容为空,仪器将自动填充上极限(或 下极限),原则是下限为负,上限为正。若需修改,移动反白条到需要修改的位置后输入 新的数据即可。如上依次输入其它极限数据。值得注意的是,BIN1、BIN2、BIN3 设置的 数据只能是绝对值形式。2nd(副参数)上下限显示方式,可以设置为绝对值形式,也可 以设置为百分比形式。

可以用 DEL——软键删除当前档的极限数据。

4.2.8.5 File (文件)

移动反白条到文件区域,显示 LOAD、SAVE 两个软键。设定好各项测量控制参数,按下 SAVE 软键保存这些参数为一个文件存入仪器内部非易失性存储器。如果想加载一个 文件,按下 LOAD 软键,从弹出的文件列表框中选择需要的文件,按下 OK 软键即可。

4.2.8.6 Tools (工具)

移动反白条到工具区域,显示一个 CLEAR 软键,使用这个软键可以清除极限列表。 按下 CLEAR 软键,屏幕上会显示信息"Confirm: CLR Table?",并且显示两个软键:YES 和 NO,按下 YES,清除极限列表。

4.2.9 系统配置页面

系统设置中是一些辅助功能选项,如接口功能配置,蜂鸣器设置,按键控制等。 系统设置中的内容不依赖于文件而独立保存。

按 **SYSTEM** 菜单按键,进入系统配置页面。这个页面上可以设置的控制参数有:液 晶对比度(CONTRAST),总线模式(BUS MODE),总线地址(GPIB ADDR),通讯波特 率(BAUD RATE),总线命令结束符(DELIMITER),取数方式(FETC DATA),HANDLER 接口触发边沿(TRIG EDGE),HANDLER 接口信号保持状态(HANDLER),讯响(INFO BEEP),比较器报警方式(CMP ALARM),保存系统设置(SAVE CFG)。系统页面分两 页显示,用户可以用 PAGE 软键来选择需要的选项。

图 4—24 系统配置页面

图 4—25 系统配置页面上的可用软键

4.2.9.1 CONTRAST (液晶对比度)

液晶对比度在 1—31 之间可调,移动反白条到 CONTRAST 区域,显示软键^{↑(+)},↓(-), 使用这两个软键调节对比度。

4.2.9.2 BUS MODE(总线模式)

用户可以选择通讯接口总线类型,移动反白条到 BUS MODE 区域,显示以下软键:

- OFF 关闭通讯接口
- RS232 打开 RS232C 通讯接口,相应的 GPIB 通讯功能被关闭
- GPIB 打开 GPIB (IEEE488) 通讯接口,相应的 RS232C 通讯功能被关闭

4.2.9.3 GPIB ADDR(总线地址)

GPIB 总线支持多机通讯,本机 RS232C 目前不支持多机通讯,因此这里的通讯地址 是 GPIB 总线本机地址。

通讯地址可在 0~30 间选择,注意绝大多数 GPIB 系统中,地址 0 由系统控者使用。 移动反白条到 GPIB ADDR 区域,使用数字键输入所需要的地址,按 ENTER 键即可。输 入地址不在 0~30 之内,仪器会提示出错信息"Data Out!",并保持当前地址不变。

仪器出厂的默认地址为8。

4.2.9.4 BAUD RATE (通讯波特率)

波特率是 RS232C 通讯总线上的数据传输速率。

本仪器的 RS232C 可支持八种常用波特率:

4800bps, 9600bps, 11520bps, 12800bps, 14400bps, 19200bps, 28800bps, 38400bps。

波特率分三组显示,移动反白条到 BAUD RATE 区域,使用软键选择需要的波特率,如果所需参数没有显示,按 NEXT 软键选择另一组参数直到该参数已显示,然后按相对应的软键即可。

4.2.9.5 DELIMITER(总线命令结束符)

无论是 RS232C 总线还是 GPIB 总线,数据和命令均是以 ASCII 字符串传送的。结束符是一串数据或命令结束的标识符号,只有接受到结束符,才可以处理之前所接受到的命令或数据串。

本仪器支持发送多种常规结束符:

TH2817CX 使用说明书

- LF 换行符 (ASCII 代码 10);
- CR 回车符 (ASCII 代码 13);

CR+LF 回车换行。
 以上任一种结束符或其组合均可被接受并识别。
 在 GPIB 总线上,同时支持总线 EOI 结束信号的收发。
 移动反白条到 DELIMITER 区域,使用软键选择需要的命令结束符。

4.2.9.6 FETC DATA(取数方式)

仪器在通过 RS232C 或 GPIB 与 PC 通讯时,测量结果可以自动或查询发送:

■ 查询方式 (QUERY): 接受到上位机发送的取数命令后,将最近一次的有效测量结果 送入输出缓冲区。

■ 自动方式 (AUTO): 仪器每测量一次,即将测量结果送入输出缓冲区。
 F提示: 有关测量结果取数命令,参阅"命令参考"一章。

F提示:在 RS232C 总线上,输出缓冲区中的数据总是被立即发送,在 GPIB 总线上,

输出缓冲区中的数据在仪器被任命为讲者后发送。

自动取数方式(AUTO FETCH)为许多仅需要获取测试数据进行统计分析的系统提供 了编程上的方便。

移动反白条到 FETC DATA 区域,使用软键选择需要的取数方式。

4.2.9.7 TRIG EDGE (HANDLER 接口触发边沿)

当触发方式为 EXT 时,触发信号由 HANDLER 接口输入,该触发信号要求是一个宽度大于 10 µ s 的 TTL 脉冲。

触发边沿有两种:

- RISE 触发脉冲的上升沿启动测量;
- FALL 触发脉冲的下降沿启动测量。

移动反白条到 TRIG EDGE 区域,使用软键选择需要的触发边沿。

4.2.9.8 HANDLER (HANDLER 接口信号保持状态)

打开比较器后,HANDLER 接口将输出分选比较结果,此信号是否在接口上保持到下 次测量,可用 HANDLER 选项控制。

■ HOLD 信号保持到下次测量后被更新;

■ CLEAR 信号在测量延时后被清除。移动反白条到 HANDLER 区域,使用软键选择需要的选项。

4.2.9.9 INFO BEEP(讯响)

显示出错信息,警告信息等都会引起讯响。移动反白条到 INFO BEEP 区域,显示软键 ON、OFF,使用这两个软键设置讯响的开(ON)或关(OFF)。

4.2.9.10 CMP ALARM (比较器报警方式)

用户可以选择何种比较结果引发报警或关闭比较器报警。移动反白条到 CMP ALARM 区域,显示以下软键:

- OFF 关闭比较器报警
- IN 合格时报警
- OUT 不合格时报警
- AUX 附属档时报警

4.2.9.11 SAVE CFG (保存系统设置)

用于保存系统设置各项内容。

系统配置各项内容设置好后,移动反白条到 SAVE CFG 区域,显示 YES 软键,按下 YES 软键后,仪器保存各项系统设置内容。

4.2.10文件列表页面

文件用以保存测量设置中的所有项目、极限列表中设置的所有状态及数据。

文件可以被仪器开机时自动调用,或由用户开机后选择调用,从而大大节省重复设定 测试参数所需的时间。

最近一次被保存或调用过的文件将被仪器在开机时自动调用,因而对于每班次的相同 内容的测量,达到开机即可直接使用的状态。

如果不需开机调用现有已保存参数,开机后进入文件操作页直接删除当前显示的文件 即可,或修改各项测量参数后进入文件操作页覆盖当前显示的文件。

按 <u>SYSTEM</u> 菜单按键,然后按软键 FILE,进入文件列表页面。文件列表中显示了用 户了所保存的文件信息,文件存在仪器内部非易失性存储器。下面是文件列表页面和该页 面上的可用软键。

File: Meas-	<pre> Files</pre>	List>			
Setup And	[NO,]	[S]	[FII	LE NAME]
Limit	0	1	<unnam< th=""><th>ed></th><th></th></unnam<>	ed>	
	1	1	*TH281	7CX*	
MAX : 12	2	0			
USED : 2	3	0			
FREE : 10	DEBUG		TEST	FILE	CFG

图 4—26 文件列表页面

图 4—27 文件列表页面的可用软键

如上图所示,存储器资源状态区域显示了仪器最大的文件数目(MAX),已经使用的 文件数(USED),以及空闲的文件数(FREE)。文件列表区域显示了文件的具体信息:[No.] 区域显示了文件的存储号;[S]区域显示了文件的状态,1表示已存在的文件,用户可以调 用,0表示不存在文件,处于空闲状态;[FILE NAME]显示文件的名称,如果未设定名称, 以<Unnamed>命名。

移动反白条到[No.]区域,显示下面的文件操作软键

■ LOAD 按下软键,反白条所在处的文件将被加载。如果文件不存在,即[S]栏的状态为"0",显示信息"Record Not Existent!"。

注意: 文件中同时还保存了页面信息,如果从文件列表页加载文件,将直接切换到原保存 文件的页面; 在其它页面上用 FILE—LOAD 加载是只加载参数,不切换页面。

■ REN 按下软键,可以对文件重命名,命名规则参阅。如果文件不存在,显示信息

"Record Not Exitent!".

■ DEL 使用这个软键来删除反白条所在处的文件。

■ **PAGE** 仪器一共可以存储 **12** 个文件,在文件列表页面上一次只能显示 **4** 个文件,因此使用这个软键来翻页,显示其它文件。

第五章 元件测量与应用指南

5.1 常用元件测量

- 1. 正确使用电源,按下电源开关。
- 2. 选择需要的测量参数(FUN1, FUN2)、测试频率(FRO)和合适的测试电平(LEV)。
- 3. 设定其他需要改变的控制参数。
- 4. 连接合适的测试夹具或测试电缆。仪器随机配备 TH26005 测试夹具和 TH26004 四端开 尔文测试电缆,可以选配 TH26006 轴向夹具芯和 TH26005 配套测量轴向引线元件,还 可选配 TH27009 SMD 贴片元件测试钳。
- 5. 在测量设置的电缆长度(CABLE)项,设置无引线端面夹具为 0m,带 1m 电缆测试线的选用 1m。
- 6. 必要时预热 10 分钟以上。
- 7. 连接随机提供的镀金短路板 TH26001 与测试夹具或测试电缆, 对仪器执行短路清"0"。
- 8. 去掉短路片,对仪器执行开路清"0"。
- 9. 将被测件连接于测试端上, 仪器开始测量。
 - ▲ 警告:请勿向测试端施加电压或电流,以免损坏测试仪器!
 - ▲ 警告:测量带电器件(如电容器)前,请先放电后测试!

5.2 被测件的正确连接

5.2.1 被测件连接

仪器具有电流驱动高端 Hcur、电流驱动低端 Lcur、电压检测高端 Hpot、电压检测低 端 Lpot 和对应于每测试端的屏蔽端一共四对测试端。

每个测试端都含有屏蔽层,屏蔽目的在于减小对地杂散电容的影响和降低电磁干扰。 测量时 Hcur、Hpot 和 Lpot、Lcur 应在被测元件引线上连接,形成完整的四端测量,以减 小引线及连接点对测试结果的影响(尤其是损耗测量)。特别是在对低阻抗元件进行检测 时,应将检测端 Hpot、Lpot 连接至元件的引线端,以防止引线电阻加入被测阻抗,其连 接的原则为 Hpot、Lpot 所检测的应为被测件上实际存在的电压。

注: Hcur、Hpot、Lpot、Lcur 也可简称为 Hc、Hp、Lp、Lc。

如果接触点及引线电阻 Riead 远小于被测阻抗(例如: Riead<Zx/1000, 精度要求不高于 0.1%)时则 Hcur、Hpot 及 Lpot、Lcur 可连接在一起后再连至被测元件两端(两端测量)。

在进行一些精度要求较高的测量时,使用测量夹具比使用测试导线(仪器附配的开尔 文夹具)要好的多。开尔文测试线在 **10kHz** 下频率测试时,可以有较好的测量结果,但超 过 **10kHZ** 频率时,开尔文测试线很难满足测试要求。因为在高频时,导线之间间隙的变化 直接改变了测试端杂散电容和电感,而测试导线总是难以加以固定的;测试导线也容易引 起其它的测试误差。

因此,在较高频率进行测量时应尽可能使用测试夹具,如果由于条件所限,则仪器清 零时测试线的状态应尽可能与测试时保持一致。

高精度的测量应满足以下几方面的要求:

- 1. 分布阻抗必须降至最小,尤其测量高阻抗元件时。
- 2. 接触电阻必须降至最小。
- 3. 应使测试端形成完整的四端对测量。
- 触点之间必须可以短路和开路。短路和开路清"0"可以轻易地减少测试夹具的 分布阻抗对测量的影响。对于开路清"0",测试端应该与被测件连接时一样,以 相同的距离隔开。对于短路清"0",低阻抗的短路片应该连接在测试端之间。

i 注意:当被测元件为有极性器件时,在测试前须注意"高电位端"请接于前面板标为 Hcur、Hpot 的端子,而"低电位端"请接于前面板标为 Lpot、Lcur 的端子。测量 有极性元件时请先放电以免损害仪器。

i 注意:由于本仪器采用四端对测试线(4TP),测试线的屏蔽层将用于回流测试电流,因此测试端的屏蔽层应在接近被测件的地方可靠短接。用户使用自制测试线时需注意!

5.2.2 消除杂散阻抗的影响

当被测件为高阻抗时(如小电容),杂散电容的影响不能忽略,图 5-2 表示使用四端测量被测件的例子,图中,Cd 与 Cx 并联,当有导体板位于被测件之下时,电容 Ch 与 Cl 串联后也和 Cx 并联,这样会对测量结果产生误差。将一块接地导体放在测试高端和低端,Cd 可以降至最小,同时若把接地端子接至下面导体板,Ch、Cl 的影响将会消除。

当被测件为低阻抗时(如小电感、大电容),由于测量线 Hcur、Lcur 上有较大电流流 过,除了测试端接触电阻的影响外,测试线之间的电磁耦合成了测量误差的主要来源,未 很好地消除耦合会对测试结果产生意想不到的影响。一般地,接触电阻影响测试阻抗的电阻部分,电磁耦合则影响测试阻抗的电抗部分。本仪器采用四端对测量方式,能有效减小这一影响。此外,使 Hcur、Lcur 以双绞线的方式引至测试件上,使其产生的磁场相互抵消,也有助于减小电磁耦合对测试的影响。

5.3 电感器的测量

i 注意:为对电感器进行准确可靠的测量,请务必仔细阅读本节内容。

电感器是由导线环绕一个磁芯所组成,其特性依据使用的磁芯材料而定。要制作电感器,空气可说是最简单的磁芯材料,但由于电感量与所用磁芯的磁导率成正比,空气磁导率极小,由于体积效率的关系,不利于制造电感器,通常使用磁性材料,如铁氧体、高导磁合金、或纯铁体等。

真实的电感并不是一个纯电感,典型电感器的等效电路如下图所示:

图 5—4 实际电感器的等效电路

大部分电感器的电感量在使用不同的测量频率和测试信号电平时会有很大的变化。有 磁芯的电感器的电感量受磁性材料的磁导率 µ 的影响,磁芯的磁感应强度随流过电感线圈 的电流所产生的磁场强度的变化而变化,其变化关系由磁化曲线描述,图 5-5 为一个电感 线圈的典型的磁化曲线。

当对磁性材料施加一个静态磁场时,其磁感应强度 B 随着磁场强度 H (与流过电流的 大小成正比)的增加而增加,**电感量 L ∝磁导率 μ**, B= μ H, 图 5-5 为 B、H、L 的关系 曲线。

一般来说,随着磁感应强度的增加,磁芯超过磁饱和点后,电感量将会下降。

电感器(特别是磁芯电感器)将因测试信号和测量频率的不同将有很大的变化。

一般来说,电感器的测量应尽可能使用小测试电流(即较小的测试电平)。由于不同 仪器的测试信号电流的不同,则使用不同测试仪器时可能会得到不同的测试结果,这主要 取决于仪器的信号源输出电压和信号源内阻。

本仪器提供 0.1V、0.3V、1V三种测试电平,信号源内阻为 30Ω和 100Ω可选。

将被测电感器连接于仪器测试端,设置好内阻,选择适当的测试电平使测试电流满足 要求。

使用图 5—7 所示的方法用户可自行调整信号源内阻以满足测试电流的要求,以达到 不同仪器测试结果的一致性。上图中调节电位器 Ra,使电流为需要值,此时可将 Ra 更换 为一固定电阻。用此方法可调节不同仪器测量的一致性。

当向被测电感器施加一高测试信号时,在某些特定的频率上可能无法准确的测量。这 是因为铁心材料的非线形,而导致测试信号电流的失真。为了降低铁心材料的非线形而引 起的效应,应降低测试信号电平。

关于电感器的直流叠加测试。

磁性电感器(变压器)更多应用于电源电路及滤波电路,纹波、噪声及干扰抑制中, 这类应用中电感器中总要流过一定的工作电流,模拟这种应用的测量方法就是**叠加直流测** 试,如图 5-8 所示。不同的叠加电流,其所对应的电感量也不一样,这就是电感器的直流 叠加特性。高导磁易饱和磁芯电感器具有显著的直流叠加特性。

图 5-8 使用外部偏置电流源叠加测试

使用外部偏置电流源时,电流源应具有尽可能大的交流阻抗,以减小测试误差。在图 **5-8**中,电流源的等效并联阻抗将直接影响测量精度。

用电压源做偏置源时,由于电压源的交流阻抗极小,则必需在电压源输出端串接足够 大的电抗器,一般要求ωL1 >> ωLx,并具备足够的电流承受能力,如图 **5-9**。

图 5—9 使用外部电压源叠加测试

电流源可能会干扰测试信号,隔离电容的充放电也会造成测试信号产生抖晃,这将影 响到叠加测试的稳定性,并因测试量程易变而降低测试速度。

F提示: 偏流测试时有关量程锁定的方法及放电测试请参阅第四章相关内容。

F提示: TH2817CX 具有内偏置功能,可提供-50mA~+50mA 的内部偏置电流源。

本公司提供有专用的外部偏置电流源可使偏流测试简单化,并提供抗冲击保护措施、 隔离措施,有效范围内的精度保证等:

产品型号	可提供的最大偏流	适配 LCR 最大频率
TH1772B	-6A~6A	10kHz
TH1773	-10A~+10A	100kHz
TH1775	-20A~+20A	1MHz

注意测试夹具对电感器测量的影响。

测试夹具一般由金属材料组成。当金属材料与电感器靠得很近时,来自电感器的漏磁 通会在此金属材料内产生涡流。产生涡流的大小与金属体的大小和形状均有关系,涡流大 小不同,则测量结果也将不同。同时,金属体也会使电感器中的磁通量发生变化,从而使 电感量发生变化。因此,在测量电感器时,应尽可能使被测件远离金属件。

关于Q值测量的准确度。

一般说来,采用 V/I (电压/电流)法的 LCR 测量仪器的 Q 值测量准确度并不太高,尤 其在测量高 Q 值时。仪器 Q 值是以计算来得到的,如 Q=X/R=1/D,若 Q 值为 100 时,R 值 在器件阻抗所占比例较小,则 R 的细微变化将引起 Q 的较大变化,如 R 变化 0. 1%即 D 变 化 0. 001,则 Q 值将从 100 变化至 91 或 111。

5.4 电容器的正确测量

电容器无论从种类或数量来说均是使用频繁的电子元件,随着电子材料、工艺和使用 等方面的发展,一方面电容器朝着大容量、高频率的方向发展,另一方面,由于设备小型 化发展的要求,贴片电容器(SMD 器件)的使用越来越广,这就要求测量仪器能适应这 种不断发展的需要,而如何正确地操作使用测量仪器同样变的越来越重要。

5.4.1 电容器的频率依赖性

所有元件都具有频率依赖性,有些电容器的频率依赖较小,而且稳定度好,损耗也小, 通常这种电容器可以用来做标准电容器,如空气电容器。而有些电容器随频率的改变其参 数会发生急剧的变化,如铝电解电容器。

图 5-10 典型电容器的等效电路

图 **5-10** 表示的为某些电容器的实际等效电路图,根据此图可得出其阻抗随频率的变化曲线图 **5-11**。

图 5-11 电容器阻抗频率曲线

5.4.2 电容器损耗测量

在串联等效电路中,电容器损耗由下式计算:

$$\begin{array}{c|c} & & \\ &$$

由于 DUT 上的串联等效电阻与损耗值密切相关,而测试夹具上的微小接触电阻 Ro 往往

也进入了串联电阻的等效值之中,实际测量的损耗包含了接触电阻:

$$D = (Rs + Ro) / Xs$$

这将给测试带来误差,尤其是 **DUT** 本身 **Rs** 很小的时候,例如高频大电容,**SMD** 电容。 这种情况下测试时要求尽可能减小接触电阻进行测量。

理论上, D 值应恒为正, 但在极低损耗的情况下, 仪器仍可能会测出负的 D 值, 如 -0.00001, 超低损耗一般已经超出了仪器测量的精度范围, 因此我们认为这种负值显示也 是正常的。

另外,对于高精度的损耗测量,我们建议直接在端面夹具上进行测量,而引出的电缆线 将使损耗的测量精度大大降低。使用自动平衡电桥则可以克服电缆线带来的附加误差,如 TH2828 系列电桥,AGILENT 4284A 等。

5.4.3 电容器的电平依赖性

正如前文所述的电感器对测试信号的大小有影响,某些电容器的参数也会随着测试电平的变化而变化。测试电平对测试结果影响最大的是陶瓷电容器特别是高K的陶瓷电容器,因此对此类电容器测量时应确定该电容器应在何测试电平的条件下进行测量。

5.4.4 SMD 电容器的测量

随着设备小型化要求的增强, SMD 电容器被广泛的得到应用。本公司可以提供适用于 SMD 器件测量的专用测量夹具 TH26009,该夹具是目前国内测量 SMD 元件的最好夹具。

由于 SMD 元件无引线,因此其 ESR (串联等效电阻) 很小,一般地,对该测量应采用 并联等效方式,对超过 1uF 的电容器 (如片式电解电容器) 仍推荐使用串联等效方式。

对微小电容量的 SMD 器件测量时,对夹具开路清 "0"时应特别注意,开路时应将夹 具在开路清 "0"时的间距调整为与 SMD 器件的宽度相同,否则会引入不合适的清 "0"误 差。如间距差 1mm,其分布电容可能会有约 0.02pF 的误差。

5.5 变压器测量

针对快速增长的电子变压器测试的需要,TH2817CX 提供了变压器基本参数的测试功能,配合TH26038 测试夹具,可直接方便地测量变压器的初次级电感(L2A,L2B)、匝比(N,1/N)、互感(M)以及初次级直流电阻(R2),也可以间接测量变压器的另两个常用参数:绕组间等效电容 Co,漏感 Lk。

注: 这里的 L2A, L2B, R2 中的 "2" 表示两端测量方法,以区别于 LCR 的四端测量。

TH2817CX旨在提供简洁廉价的变压器测量手段,受有限测量端子的限制,变压器测量 只能采用两线方式,因而其测量精度低于 LCR 方式下的四端测量。

利用 TH2817CX 的内置偏压源,还可以对变压器绕组进行偏流测试。

图 5-15 变压器及其参数示意

变压器测试夹具及连接示意图如图 5-16 所示。

建议不要使用独立的连接器代替 TH26038 测试夹具,因为 TH2817CX 要求四个测试端 子的屏蔽端可靠短接而形成四端对。

图 5—16 变压器测试连接示意图

图 5-16 中,我们将连接到 Hpot 端子的绕组定义为初级,绕组 A;将连接到 Hcur 端子的绕组定义为次级,绕组 B。

变压器测试前应根据需要选择合适的测试电平以及测试频率。

短路及开路清零应在选择好参数及连接好变压器测试夹具后进行。短路清零时,如主参数为L2A,Hpot端子与低端可靠短接,如主参数为L2B,则Hcur端应与低端可靠短接。

5.5.1 初次级电感 L2A、L2B

按图 5-17 连接测试夹具和变压器后,主参数选择 L2A 可测量初级电感,选择 L2B 测量 次级电感。

L2A 时,信号源在变压器初级。

L2B 时,信号源在变压器次级。

5.5.2 匝比与极性测量 N、1/N

TH2817CX 采用电压比法直接测量匝比,副参数选择 N 或 1/N 可测量匝比。 N 或 1/N 显示为负时,表示连接到 Hcur 与 Hpot 端的是变压器的非同名端。

图 5—17 电压比法直接测量匝比

测量参数是 L2A-N 时, N 为初级对次级的匝比; 测量参数是 L2B-N 时, N 为次级对初级的匝比。

i 注意: TH2817CX 适合于 N³ 1 的匝比测量,如果 N < 1,则可能因采样信号幅度过 大导致测量错误。因此测量前请合理选择 L2A 或 L2B。

一般来说,如果绕组 A 圈数大于绕组 B,则选 L2A-N,反之选择 L2B-N。

F提示: 在极限表中设置 N-REF 后 (大于 1), N 及 1/N 可直接显示为变压器初次级的 圈数。参考第四章 N-REF 的设置。

5.5.3 互感测量 M

互感采用直接测量法,按图 5-17 连接变压器后,副参数选择 Ⅲ可测量互感。

TH2817CX 使用说明书

如同匝比测量一样,当绕组 A 圈数大于绕组 B 时,选择 L2A-M测量,反之选择 L2B-M 测量。

5.5.4 直流电阻测量 R2、DCR

选择 L2A-R2 可直接测量初级电感与初级直流电阻;

选择 L2B-R2 可直接测量次级电感与次级直流电阻。

在 LCR 方式下,选用 Ls-DCR 可以四端方式测量变压器的某一绕组的电感量及直流电阻。

5.5.5 漏感测量 Lk

漏感不是 TH2817CX 所直接支持的测量参数,但根据变压器漏感的定义,使用 LCR 功能的 Ls 即可简单测出漏感,如图 5-19 所示。

测试线可使用 TH26011。

图 5—19 变压器漏感测量

在变压器测量方式下,脱开 Hcur 端子,短接次级,用 L2A 就可测出初级漏感量;脱 开 Hpot 端子,短接初级,用 L2B 则可测量次级漏感量。

5.5.6 绕组间电容 Co

变压器绕组间的等效电容可用 LCR 方式下的 Cp 参数测量

图 5—20 变压器绕组间电容测量

测试线可使用 TH26011。

5.6 比较器设置实例

TH2817CX 提供了比较完备的比较器功能,可方便生产线元件测量与判别及进出货检验,标准配置的 HANDLER 接口使之适合于自动分选测量系统。

比较器的概念及具体操作在前章有详尽的叙述,这里举两个设置例子。

5.6.1 电容器分选

电容型号: 0805CG271

基本要求:容量分两档,J档和K档,容量合格损耗不合格时另外归档。 测量参数:频率100kHz,电平1Vrms,慢速,不合格时报警,外部触发。 分选参数:J档-4.6% ~ +4.8% K档-9% ~ +10% 损耗 tgδ < 0.15%

此例需设置参数如下表:

主参数(FUN1)	Ср
副参数 (FUN2)	D
频率(FRQ)	100kHz
电平 (LEV)	1V
速度(SPEED)	SLOW(慢速)
附属档开关(AUX)	ON
主参数公差模式 (MODE)	%TOL(百分比公差方式)
标称值(NOMINAL)	270pF
一档下限(BIN1 LOW)	-4.6%
一档上限(BIN1 HIGH)	4.8%
二档下限(BIN2 LOW)	-9%
二档上限(BIN2 HIGH)	10%
副参数下限(2nd LOW)	0.0000
副参数上限(2nd HIGH)	0.0015
触发方式(TRIG)	EXT (外部)
报警方式(CMPALARM)	OUT (不合格时)

说明 1: 因为是小电容, 其 100kHz 阻抗大于 1kΩ, 因此我们选择并联等效方式。

说明 2: 容量任一档合档但损耗不合格时另档处理,因此打开附属档,将之归为 AUX 档。如果关闭 AUX,则损耗不合格时即整体判别为不合格。

说明 3:由于给定上下限是基于 270pF 标称值的百分比偏差,因此主参数选择%TOL 百分比模式。

61

具体设置:

1) 在元件测量显示页(Meas Display),选择 Cp-D,设置频率、电平、速度等:

FUN1: Cp FUN2: D	<measdisplay> File Tools</measdisplay>
FRQ: 100kHz	Cn · 326 54nF
LEV: 1.0V	op : 020.01m
RANGE: AUTO	D · 0 0061
SPEED:SLOW	D . 0.0001
ZERO : ON	2F B-Bin BAL BinNo LCR

2) 按 **SETUP** 菜单键进入测量设置页面(Meas Setup),更改触发方式为 EXT(外部 触发):

FUN1: Cp	<meas setup=""></meas>	File Tools
FUN2: D	TRIG : EXT	BIASM: VOLT
FRQ: 100kHz	INT_R: 30 Ω	BIAS : OFF
LEV: 1.0V	DELAY: Oms	DCHR : OFF
RANGE: AUTO	AVG : 1	RANGE: LCR
SPEED: SLOW	ALCZ : OFF	CABLE : Om
DISPM: OFF		B-LIM LIMIT SETUP

3) 按 **SETUP** — **LIMIT** 进入极限列表设置页(Limit Table),设置标称值,主参数 公差模式,上/下限参数,比较器开关,附属档开关:

NOMINAL:	<limit< th=""><th>Table></th><th>Fil</th><th>e 1</th><th>Cools</th></limit<>	Table>	Fil	e 1	Cools
270.00pF	[BIN]	[L0	W]	ΕH	IGH]
N-REF:	1	-4.6	50%	4.	80%
0.0000	2	-9.0	0%	10.	00%
MODE: %TOL COMP: ON	3 2nd	0.000	00	0.00)15
AUX : ON		B-	LIM	LIMIT	SETUP

4) 按 **SYSTEM** 菜单键进入系统设置页面(System Config), 找到"CMP ALARM"项, 设置为 OUT:

5)设置完成后返回元件测量显示页(Meas Display)

上述设置完毕后,应该进行保存,以免下次开机再重复设置,保存后仪器将在下次开 机后自动调用。

系统设置中的内容需在系统设置中的"SAVE CFG"项中保存。

有关文件保存操作这里不重复描述,请参阅第四章内容。

5.6.2 磁环分选

磁环型号: T10*6*5R2K

基本要求:磁环的磁性能分类常以单圈电感测量为依据,这是最方便而又易于分选系统自动测量的解决方案。本例要求将磁环按单圈电感量归为五类:

分类	电感范围	引用 HANDLER 口分选信号
Ι	小于 2.2 μ ℍ	PLO(主参数偏低)
II	2.2 μ H \sim 3.3 μ H	BIN1 (档1合格)
III	3.3µH∼4.7µH	BIN2(档2合格)
IV	4.7µH∼5.6µH	BIN3 (档3合格)
V	大于 5.6 μ ℍ	PHI(主参数偏高)

注:由于 TH2817CX 只有三个合格档分选,上表中 I 类和 V 类为引用 HANDLER 接口上的 PLO, PHI 信号进行扩展而得。

测量参数: 频率 1kHz; 电平 0.1Vrms; 速度: 中速; 外部触发, 不报警。

此例需设置如下参数:

主参数(FUN1)	Ls
副参数(FUN2)	Q
频率 (FRQ)	1kHz
电平 (LEV)	0.1V
速度 (SPEED)	MED(中速)
附属档 (AUX)	任意
主参数公差模式 (MODE)	±TOL (绝对公差方式)
标称值(NOMINAL)	0
一档下限(BIN1 LOW)	2.2 µ H
一档上限(BIN1 HIGH)	3.3µH
二档下限(BIN2 LOW)	3.3 μH
二档上限(BIN2 HIGH)	4.7 µ H
三档下限(BIN3 LOW)	4.7 µ H
三档上限(BIN3 HIGH)	5.6µH
副参数下限(2nd LOW)	设为负的极小值
副参数上限(2nd HIGH)	高为正的极大值

说明1: 磁环电感阻抗很小, 用串联等效方式测量;

说明 2: 直接设置每档的绝对限,不使用标称值。

说明 3: 本例不需对副参数比较,将副参数的上下限设为足够宽,确保比较时副参数 在合格范围内。

说明 4: 由于副参数始终为合格,因而不会存在附属档,AUX 状态可任意。

具体设置过程:

1) 在元件测量显示页(Meas Display),选择 Ls-Q,设置频率、电平、速度等参数:

FUN1: Ls	<measdisplay></measdisplay>	File Tools
FUN2: Q FRQ: 1.0kHz LFV: 0.1V	Ls :	1.7026mH
RANGE: AUTO SPEED: SLOW	Q :	25.567
ZERO : ON	2F B-Bin	BAL BinNo LCR

2) 按 **SETUP** 菜单键进入测量设置页面(Meas Setup),更改触发方式为 EXT(外部 触发):

FUN1: Ls	<meas setup=""></meas>	File Tools
FUN2: Q	TRIG : EXT	BIASM: VOLT
FRQ: 1.0kHz	INT_R: 30 Ω	BIAS : OFF
LEV: 0.1V	DELAY: Oms	DCHR : OFF
RANGE: AUTO	AVG : 1	RANGE: LCR
SPEED:SLOW	ALCZ : OFF	CABLE : Om
DISPM: OFF		B-LIM LIMIT SETUP

3) 按 **SETUP** — **LIMIT** 进入极限列表设置页(Limit Table),设置标称值,主参数公 差模式,上/下限参数,比较器开关,附属档开关:

NOMINAL:	<limit< th=""><th>Table≻</th><th>Fil</th><th>e .</th><th>Tools</th></limit<>	Table≻	Fil	e .	Tools
0. 0000uH	[BIN]	Γ	LOW]	E E	HIGH]
N-REF:	1	2.	2000uH	3.30	000uH
0.0000	2	3.	3000uH	4.70)00uH
MODE: ±TOL	3	4.	7000uH	5.6	Hu000
COMP: ON	2nd	-9	999.	9999	99.
AUX : ON			B-LIM	LIMIT	SETUP

4) 本例不需比较报警,按 SYSTEM 菜单键进入系统设置页面(System Config),找到 "CMP ALARM"项,设置为 OFF:

5) 设置完成后返回元件测量显示页(Meas Display)

设置完毕,保存到文件,仪器下次开机后将自动直接调用。参阅第四章有关内容。
第六章 性能测试

6.1 测量准确度

测量准确度包含了测量稳定性、温度系数、线性度、测量重复性等误差。 对仪器测量准确度进行检查时必须在下述条件下进行:

- a) 开机预热时间: ≥ 20 分钟。
- b) 预热后正确地进行开路、短路清"0"。
- c) 仪器量程工作在"AUTO",以选择正确的测量范围。

6.1.1 | Z | , L, C, R, X 的准确度

| Z | , L, C, R, X 的准确度 Ae 由下式表示:

A_e = ±[A+ (K_a+K_b+K_f) × 100+K_L]×K_c [%]
A: 基本测量准确度(见图 6-1)
K_a: 阻抗比例因子(见表 6-1),阻抗小于 500Ω时使用
K_b: 阻抗比例因子(见表 6-1),阻抗大于 500Ω时使用
K_c: 温度因子(见表 6-2)
K_f: 校准内插因子 (见表 6-3)
K_L: 电缆长度因子 (见表 6-4)
i 注意: K_a、K_b 根据阻抗大小只取其一,另一个以 0 代入。
L, C, X准确度使用条件: D_x (D测量值) ≤0.1
R,准确度使用条件: Q_x (Q测量值) ≤0.1
当D_x≥0.1,对L, C, X,准确度因子A_e应乘以√1+D²_x

当Q_x \geq 0.1,对R准确度因子A。应乘以 $\sqrt{1+Q_x^2}$

6.1.2 D 准确度

D准确度D。由下式给定:

当Dx>0.1, D。应乘以(1+Dx)

6.1.3 Q 准确度

Q准确度由下式给定:

$$\mathbf{Q}_{e} = \pm \frac{Q_x \times D_e}{1 \, \mathbf{m} O_x \times D_e}$$

这里,Q_{*}是被测Q的值。 D_{*}是D的准确度

上式使用条件 Qx×D。<1

6.1.4 θ准确度

θ准确度由下式给定:

$$\theta \mathbf{e} = \frac{180}{p} \times \frac{A_e}{100} \qquad \text{[deg]}$$

6.1.5 R_P准确度

当
$$D_x$$
(被测D值) \leq 0.1 时
 R_p 准确度由下式给定:
 $R_p = \pm \frac{R_{px} \times D_e}{D_x m D_e}$ [Ω]
这里, R_{px} 是被测 R_p 的值[Ω]。
 D_x 是被测D的值。
 D_e 是D的准确度。

6.1.6 Rs准确度

当D_x (被测D值) ≤0.1 时 R_s准确度由下式给定: R_{se} = X_x×D_e [Ω] X_x = 2π fL_x=<u>1</u> 2*pfC_x* 这里, X_x是被测X的值[S]。 C_x是被测C的值[F]。 L_x是被测L的值[H]。 D_e是D的准确度 f是测试频率

6.1.7 变压器参数准确度

TH2817CX的变压器参数是采用两线测量方式测量的,不列为本仪器的精度测试范畴,但一般仍可参照**LCR**测量精度指标由下式给定:

Te = $2 \times Ae$

DCR精度: **A** (1+**R**x/5MΩ+16mΩ/**R**x)

慢速时, A = 0.1 中速、快速时, A = 0.25

6.1.8 准确度因子

图 6-1 中,在边界线上,可选择较小的值。

图 6-1 中, 基本准确度 A 值选择方法如下:

0.1 (较小值) ----当 Vs=1V,测量速度为中速、慢速的A值。

0.2 (较大值) ----当 Vs=1V,测量速度为快速的A值。

测试电平修正系数ArB(见表 6-2),按图 6-1选择基本准确度A,A乘以Ar得到电平修 正后的基本测量准确度。这里,V.为测试信号电压。 TH2817CX 使用说明书

测试信号电日	EV。 准确度修正系数 Ar
0.1V	2.5
0.3V	1.5
1V	1
== < 0	甘土净办亩市五极工石料

表 6-2 基本准确度电平修正系数

表 6-1 阻抗比例因子Ka、Kb

速度	频率	K _a (Zm 小于 500 Ω时使用)	K ⊾(Zm大于 500Ω时使用)
	fm<100Hz	$(\frac{1\times10^{-3}}{ Z_m })(1+\frac{200}{V_s})(1+\sqrt{\frac{100}{f_m}})$	$ Z_m (1 \times 10^{-9})(1 + \frac{70}{V_s})(1 + \sqrt{\frac{100}{f_m}})$
中速 慢速	100Hz≤fm ≪100kHz	$(\frac{1\times10^{-3}}{ Z_m })(1+\frac{200}{V_s})$	$ Z_m (1 \times 10^{-9})(1 + \frac{70}{V_s})$
	fm⊳100kHz	$(\frac{1\times10^{-3}}{ Z_m })(2+\frac{200}{V_s})$	$ Z_m (3\times 10^{-9})(1+\frac{70}{V_s})$
	fm<100Hz	$(\frac{2.5 \times 10^{-3}}{ Z_m })(1+\frac{400}{V_s})(1+\sqrt{\frac{100}{f_m}})$	$ Z_m (2\times 10^{-9})(1+\frac{100}{V_s})(1+\sqrt{\frac{100}{f_m}})$
快速	100Hz≤fm ≪100kHz	$(\frac{2.5 \times 10^{-3}}{ Z_m })(1+\frac{400}{V_s})$	$ Z_m (2\times 10^{-9})(1+\frac{100}{V_s})$
	fm>100kHz	$(\frac{2.5\times10^{-3}}{ Z_m })(2+\frac{400}{V_s})$	$ Z_m (6 \times 10^{-9})(1 + \frac{100}{V_s})$
	主由 4	`■ 汕口土晒支「□■】	

表中,fm:测试频率[Hz] Zm:被测件阻抗[Ω] Vs:测试信号电压[mV.ms]

表 6-2	温度因子K。
-------	--------

温度(℃)	5	8	18	28	38		
K.c.	6	4	2	1		2	4

表 6-3 校准内插因子 Kf

测试频率	Kf
典型频率 (直接校准)	0
非典型频率(内插校准)	0.0003

TH2817CX 的全部十个频率都是典型频率;

表	6-4	电缆长	度因	子
1	V-T	10/00	/ X 🗠	

汕ば信号由亚		电缆长度	
砌风宿与电干	Om	1m	2m
0.1Vrms ,0.3Vrms	0	2.5×10 ⁻⁴ (1+0.05fm)	5×10_4(1+0.05fm)
1Vrms	0	2.5×10 ⁻³ (1+0.016fm)	5×10 ⁻³ (1+0.05fm)

表中,fm为测试信号频率[kHz]。

6.2 性能测试

各项测试应在 **1.2** 所述工作条件下进行。本测试只列入仪器主要部分指标的测试,其 它部分未列入的参数,用户可根据本手册所列指标在规定条件下进行测试。若发现测试结 果超出指标范围,请送至专门的维修部门或本公司维修。

6.2.1 性能测试所用器件及设备

序号	仪器设	备名称	技术要求
		100pF	
		1000pF	
1	与准由家盟	10000pF	0.02%
	你但也合命	10nF	损耗D已知
		0.1uF	
		1uF	
		10 Ω	
2	交流 标准电阻器	100 Ω	
		1k Ω	0.02%
		10k Ω	
		100k Ω	
		100 µ H	
2	与准由咸盟	1mH	0.029/
3	你但也恐奋	10mH	U.UZ%
		100mH	
4	频率计		(0~1000) MHz
5	数字万用表		0.5%

6.2.2 功能检查

仪器各功能键、显示器、端子等应能正常工作,各项功能正确无误。

6.2.3 测试信号电平精度测试

将数字万用表置于 AC 电压量程,其中一根测试棒连接到测量仪的 Hc 端,另一根测试 棒连接到接地端。改变电平为:0.1V,0.3V,1V,读数应符合 2.2.2 的要求。

6.2.4 频率精度测试

将频率计接地端与仪器的接地端相连,频率计测试端与仪器测试端 Hc 端相连。改变频率为: 50Hz、100Hz、1kHz、10kHz、100Hz,频率计的读数应符合 2.2.1 的要求。

6.2.5 电容量 C、损耗 D 精度测试

功能	C₋ _₽ D				
测试频率	100Hz	1kHz	10kHz	100kHz	分别测试
电平	1V				
量程	AUTO				
偏置	无				
速度	慢				

测试前应进行短路和开路清零。 接入标准电容器 100pF、1000pF、1000pF、10nF、 0.1uF、1uF,改变频率,仪器读数与标准值之间的误差电容量 C 应在 6.1.1 规定的允许误差范围内,损耗 D 应在 6.1.2 规定的允许误差范围内。

6.2.6 电感量 L 精度测试

L.-Q

功能

测试频率	100Hz	1kHz	10kHz	100kHz	分别测试
电平	1V				
量程	AUTO				
偏置	无				
速度	慢				

测试前应进行短路和开路清零。 接入标准电感器 100 µ H、1mH、10mH、100mH,改变 频率,仪器读数与标准值之间的误差应在 6.1.1 规定的允许误差范围内。

71

6.2.7 阻抗 Z 精度测试

功能	Ζ- θ				
测试频率	100Hz	1kHz	10kHz	100kHz	分别测试
电平	1V				
量程	AUTO				
偏置	OV				
速度	慢				

测试前应进行短路和开路清零。接入交流标准电阻器 10Ω、100Ω、1kΩ、10kΩ、100kΩ, 改变频率, 仪器读数与标准值之间的误差应在 6.1.1 规定的允许误差范围内。

第七章 远程控制

本仪器可使用 RS232C 串行接口(标配)或 GPIB 并行接口(选件)进行数据通讯和无 仪器面板的远程控制,但二者不可同时使用;它们具有相同的程控命令,但使用不同的硬 件配置和通讯协议。本章介绍接口的使用方法,接口命令的使用详见第八章。

7.1 RS232C 接口说明

仪器标准配置的 RS232C 接口可用于与计算机及 PLC 通讯,为数据采集及统计分析提供了最为廉价方便的条件。仪器提供了丰富的程控命令,通过 RS232C 接口,计算机可实行仪器面板上几乎所有功能操作。

7.1.1 RS232C 接口简介

目前广泛采用的串行通讯标准是 RS-232 标准,也可以叫作异步串行通讯标准,用于 实现计算机与计算机之间、计算机与外设之间的数据通讯。RS 为"Recommended Standard" (推荐标准)的英文缩写,232 是标准号,该标准是美国电子工业协会(EIA)1969 年正式公 布的标准,它规定每次一位地经一条数据线传送。

标准 RS-232C 接口使用 25 芯连接器或 9 芯连接器。最常用的 RS-232 信号如表所示:

信号	符号	25 芯连接器引脚号	9 芯连接器引脚号
请求发送	RTS	4	7
清除发送	CTS	5	8
数据设置准备	DSR	6	6
数据载波探测	DCD	8	1
数据终端准备	DTR	20	4
发送数据	TXD	2	3
接收数据	RXD	3	2
接地	GND	7	5

同世界上大多数串行口一样,本仪器的串行接口不是严格基于 RS-232 标准的,而是只提供一个最小的子集。如下表:

信号	符号	连接器引脚号
发送数据	TXD	3
接收数据	RXD	2
接地	GND	5

本仪器略去了标准 RS232C 的通讯联络与握手功能,目的是简化应用,减少开发与应用成本,但牺牲了数据通讯的可靠性与可控性。

仪器采用了简易的软件联络方案以弥补这一不足。

本仪器 RS232C 采用与 PC 相同的标准 9 芯针式 DB 连接器,引脚定义也保持一致,如下图:

使用标准的 DB 型 9 芯孔式插头可以与之直接相连。

▲ 警告:为避免电气冲击,插拔连接器时,应先关掉电源;

▲ 警告:请勿随意短接输出端子,或与机壳短接,以免损坏器件。

7.1.2 与计算机通讯

34 仪器与计算机连接如图所示:

由上图可以看到,本仪器的引脚定义与 IMB AT 兼容机使用的 9 芯连接器串行接口引 脚定义相同。用户可使用双芯屏蔽线按图示自行制做三线连接电缆(长度应小于 1.5m)或 从同惠电子有限公司购买到计算机与仪器间的串行接口电缆线或直接购买标准的 DB9 芯 电缆线。

F提示: TH2817CX 已在仪器内部将 4、6 脚短接, 7、8 脚短接。因而从市场上购买的标准的 RS232C 9 芯通讯电缆一般可以直接使用。

74

34 通过串行口与计算机通讯时,应首先设置仪器的总线方式,参阅 4.2.9.2

34 串行口主要参数

传输方式	含起始位和停止位的全双工异步通讯		
波特率	4800 bps, 9600 bps, 11520 bps, 12800 bps, 14400 bps,		
	19200 bps,28800 bps,38400 bps 可选		
数据位	8 BIT		
停止位	1 BIT		
校验	无		
结束符	CR、LF、CR+LF 可选		
联络方式	软件联络		
连接器	DB9 芯		

¾ 软件协议

TH2817CX 在 RS232 接口上不使用硬件通讯联络,由于仪器并不总是处于可接受数据状态,这样主机发送到仪器的命令串就可能会丢掉一些字符。TH2817CX 通过响应 0xAA 进行简易的软件联络,从而提高通讯命令的协调性。

编制计算机通讯软件时请参考下述内容:

(1) 命令串语法及格式在第八章"命令参考"中叙述。

(2) 主机发送的命令以 ASCII 代码传送,以 "CR"、"LF" 或其组合均可以作为结束 符,仪器在收到结束符后开始执行命令串。

(3) 仪器接受到 OxAA 查询字符后,该字节不进入接受缓冲区,而是以 OxCC 向主机回送,主机如接受到 OxCC,表明仪器处于可接受命令状态,可进行后续字节的连续发送,如 未收到,主机应等待,并可继续发送 OxAA 直到接受到 OxCC。如始终接受不到,可能因素 有:

a) 串行口连接故障,应检查串口连接。

b) 检查仪器是否已打开 RS232 口功能。

c) 仪器正在执行总线命令,暂时不能响应串行口。、

(4) 主机在发送过程中,如接受到多余的 OxCC 也是有可能的,应将之忽略。

(5) 本仪器仅在下面两种情况下向主机发送信息:

a) 接收到主机的查询字符 OxAA,以 OxCC 回送。

b) 执行查询命令,向主机发送查询结果。

(6) 仪器一旦执行到查询命令,将立即发送查询结果,而不管当前命令串是否已全部执行完毕。因此,一个命令串中可以有多次查询,但主机要有相应次数的读结果操作。本协议推荐一个命令串中仅包含一次查询。

(7) 查询结果以 ASCII 码字串送出,结束符由系统配置中的"DELIMITER"项选择,可以是"CR"、"LF"或"CR+LF"。

(8) 仪器发送查询结果时,是连续发送的,主机应处于接受数据状态,否则可能造成数据的丢失。

75

(9) 主机产生查询后,要保证读空查询结果。

(10) 以 DOS 应用软件编制的通讯软件,则应在支持串行口的纯 DOS 环境下运行,若在 WINDOWS 下运行,则可能会因对串行口的管理方式不一样而产生错误。

34 通讯示例程序

以下范例是以 C 语言编制的在纯 DOS 环境下运行的通讯程序,其中的 main 函数可以 由用户任意扩展通讯功能,而其它子函数则示例了如何使用串行口进行字串的输入输出。 #define PORT 0

#include "dos.h"
#include "stdio.h"

#include "stdlib.h"

#include "ctype.h"

#include "conio.h"

```
void port_init( int port,unsigned char code );
```

int check_stat(int port);	/* read serial port state(16bit) */
void send_port(int port, char c);	/* send a character to serial port */
<pre>char read_port(int port);</pre>	/* recive a character form serial port */
void string_wr(char *ps);	/* write a string to serial port */
void string_rd(char *ps);	/* read a string from serial port */
char input[256];	/* quary recieve bufer */

main()

```
{
```

}

```
port_init( PORT,0xe3 );/* initilize serial port:baud = 9600,no verify,1 bit stop,8 bit data */
string_wr( "trig:sour bus;*trg" );
string_rd( input );
printf( "\n%s",input );
string_wr( "freq 10khz" );
string_wr( "func:imp:apar cs;bpar d" );
string_wr( "voltage:level 0.3v" );
```

```
/* write string to serial port */
void string_wr( char *ps )
{
    unsigned char c;
    int m.n:
```

```
for( m = 1000;m;m-- ) /*communication handshake:wait until ready*/
  { send_port( PORT,0xaa );
     for(n = 100;n;n--)
     {
       delay(2); /* wait about 2ms */
       if( kbhit() && ( getch() == 27 ) ) /* if escape key keypress */
       { printf( "\nE20:Serial Port Write Canceled!" );
          exit(1);
       }
       if( check_stat(PORT) & 256 )
       { c = read_port( PORT );
          break;
       }
     }
     if(n) break;/*TH2817CX serials not ready for receive*/
  }
  if( c != 0xcc )/*check receive*/
  { printf( "\nE10:Serial Port HandShake Failure!" );
     exit(1);
  }
/*handshake success, begin send string: */
  for(;*ps;)
  {
     send_port( PORT,*ps++ );
     delay(2);
  }
  send_port( PORT,'\n' );
  delay(2);
}
/* read string from serial port */
void string_rd( char *ps )
{
  unsigned char c,i;
                                            /* max read 256 characters */
  for(i = 0; i < 255; i++)
  {
     while( ! (check_stat(PORT) & 256) ) /* wait serial recieve ready */
```

while(check_stat(PORT) & 256) read_port(PORT);/* read data until null */

```
/* if escape key keypress */
       if( kbhit() && (getch() == 27) )
        { printf( "\nE21:Serial Port Read Canceled!" );
          exit(1);
        }
     c = read_port( PORT );
     if( c == 0xcc ) continue;/*skip the more handshake characters*/
     if( c == \langle n' \rangle break;
     *ps = c;
     ps++;
  }
  *ps = 0;
}
/* send a character to serial port */
void send_port( int port, char c )
{
  union REGS r:
  r.x.dx = port;
                            /* serial port */
                            /* int14 function1:send character */
  r.h.ah = 1;
                            /* character to be sent */
  r.h.al = c;
  int86( 0x14,&r,&r );
                           /* check ah.7, if set by int86( 0x14,&r,&r ), mean trans error */
  if( r.h.ah & 128 )
  { printf( "\nE00:Serial port send error!" );
     exit(1);
  }
}
/* read a character from serial port */
char read_port( int port )
{ union REGS r;
  r.x.dx = port;
                            /* serial port */
                             /* int14 function2:read character */
  r.h.ah = 2;
  int86( 0x14,&r,&r );
  if( r.h.ah & 128 )
                           /* if ah.7 be set,mean trans error */
  { printf( "\nE01:Serial port read error!" );
     exit(1);
   }
  return r.h.al;
}
```

```
/* check the status of serial port */
int check_stat( int port )
{ union REGS r;
  r.x.dx = port;
                           /* serial port */
  r.h.ah = 3;
                            /* int14 function3:read status */
  int86( 0x14,&r,&r );
                           /* ax.7 show serial operation, ax.8 show serial recive ready */
  return r.x.ax;
}
/* initialize the serial port */
void port_init( int port, unsigned char code )
{ union REGS r;
  r.x.dx = port;
                         /* serial port */
  r.h.ah = 0;
                         /* int14 function0:initial serial port */
  r.h.al = code;
                         /* initialization code */
```

```
}
```

int86(0x14,&r,&r);

在 WINDOWS 应用程序中,串行接口可以由控件管理,系统具有发送与接受缓冲区,因而串口的收发相对要简便得多。一般只要考虑以下两点:

1)要发送命令数据串前,要确认仪器处于可接受状态,先发送 0xAA 进行查询,直 到接受到 0xCC 响应。如能控制相邻两个命令串之间发送的时间节奏,这种查询也不是必 需的。

2)处理接受到的数据串时,应该过滤掉 0xCC。

7.2 GPIB 接口说明

7.2.1 GPIB 总线

IEEE488 (GPIB)通用并行总线接口是国际通用的智能仪器总线接口标准。IEEE为电 气与电子工程师学会的英文缩写,488为标准号。通过该接口可以与计算机或其它智能化 设备连接通讯,可以方便地与其它测试仪器一起组成自动测试系统。在同一总线上可以同 时连接多台测试仪器。在本仪器中,仪器采用 IEEE488.2 标准,接口板由用户选购。控制 指令系统是开放的,用户可根据该控制指令系统编程以达到目的。控制指令系统支持仪器 绝大多数功能,也就是说,在控制计算机上可以达到仪器几乎所有功能的操作,以实现仪 器的远程控制。

使用本仪器 GPIB 系统时,应注意以下几点:

- 一个总线系统的电缆总长度不应超过2米和连接的测试仪器总数的乘积,并且电缆总长不超过20米。
- 2. 同一总线上最多可同时连接 15 台测试仪器。
- 3. 电缆怎样连接在一起并无限制,但推荐在任一测试仪器上仅叠加4个背式接插件。

图 7-1 GPIB 接插件

图 7-3 四背式接插件叠加

7.2.2 GPIB 接口功能

本仪器提供了除控者外的绝大多数 GPIB 通用功能,参见下表:

代号	功能
SH1	支持全部数据源联络功能
AH1	支持全部受信器联络功能
T3	基本讲功能;只讲功能; MLA 时讲取消; 不支持服务请求及串并行点名
L3	基本听功能; MTA 时听取消; 无只听功能
RL1	远控/本地功能
DC1	设备清除功能
DT1	设备触发功能
C0	无控者功能
E1	开集电极驱动

7.2.3 GPIB 地址

本仪器的 GPIB 以单地址方式寻址,没有副地址,可使用 0-31 作为 GPIB 地址,出厂时默认地址为 8,地址值可被保存在非易失性存储器中,地址的设置详见第四章中 4.2.9.3 一节。

7.2.4 GPIB 总线功能

本仪器可响应以下 GPIB 总线命令:

34 接口清除(IFC)

34 清除设备 (SDC 或 DCL)

仪器接受到此命令后将清除输入输出缓冲器, GPIB 接口处于准备状态。

34 本地控制 (GTL)

此命令使仪器返回本地控制,面板上按键处于有效状态。

34 远程控制 (RMT)

此命令使仪器进入远控方式,仪器将在面板上显示 LOCAL,按 LOCAL 软键可使仪器返回本地,而其它按键在远控状态下均不可操作。

34 触发 (GET)

此命令将产生一次触发,仪器在测量后将测量结果送入输出缓冲器中。

即等同于 SCPI 的 TRIG+FETCh?命令和 GPIB 公用命令*TRG。

可程控仪器标准命令(SCPI)的详情参见下一章:命令参考。

7.3 数据格式

仪器从接口总线输出测量结果时,以 ASCII 字串的格式传送。 数据格式如图 7-4:

图 7-4 数据格式 1

上图中,","号为数据间的分隔符,NL为行结束符,表示字串结束,可以是LF、CR 或LF+CR,由系统配置中的"DELIMTER"项指定; ^END 为IEEE-488 总线的EOI(结束) 信号,本仪器从 GPIB 上发送的信息都是在发送行结束符的同时驱动 EOI 信号。RS232C 总线上没有这个信号,只有行结束符。

<DATA A>, <DATA B>, <BIN>的格式分述如下:

¾ <DATA A>及<DATA B>格式:

<DATA A>为主参数测量值, <DATA B>为副参数测量值, 以指数格式表示, 用 12 位 ASCII 字符组成, 即:

SN.NNNNNESNN(S: +/-, N: 0 到 9, E: 指数符号; 尾数的"+"号省略)

¾ <BIN>格式:

<BIN>用以输出分选结果(如果比较器打开的话),是以ASCII码表示的整数形式, 其意义如下:

数值	分选结果
1	档1
2	档 2
3	档 3
4	附属档
5	不合格
其它	非法输出

第八章 命令参考

8.1 命令结构

仪器命令分为两种类型: GPIB 公用命令和 SCPI(可程控仪器标准命令)命令。GPIB 公用命令由 IEEE488.2-1987 标准定义,这些命令适用于所有仪器装置,但本仪器并不支持 全部公用命令。SCPI 命令是树状结构的,最多可以有三层,在这里最高层称为子系统命令。 只有选择了子系统命令,该命令下的层才能有效,使用冒号来分隔命令的层次结构。例图 8-1。

图 8-1 命令树例子

命令结构基本规则:

忽略大小写。

例: FUNC:IMP:RANG 1= func:imp:rang 1= Func:Imp:Rang 1

空格用以分隔命令和命令的参数,空格前为命令,空格后为该命令对应的参数。

例: FUNC: IMP: RANG 1 中, RANG 是命令, 1 是其参数。 有些命令没有参数。例如: 触发命令 TRIG, 开路清零命令 CORR: OPEN。 空格(_表示空格)不能放在冒号的前后。

例: ý FUNC_:_IMP:RANG 1 " þ FUNC: IMP:RANG 1 命令可以缩写,也可以全部拼写(在以后的命令叙述中,缩写以大写字母给出)。

例: FUNCTION: IMPEDANCE: RANGE 1 = FUNC: IMP: RANG 1 命令后紧跟一个问号(?)执行一次对应于该命令的查询。

例: FUNC: IMP: APAR?

多重命令:

分号(;)用来分隔同一命令行上的多重命令,下面是多重命令规则: 在一个多重命令行上,使用分号(;)来分隔同一子系统命令下的同层命令。 例: CORR:SPOT:OPEN;DCR

这里,OPEN和DCR是同层次命令,即都是"SPOT"下的子命令。

分号(;)作为分隔符,后面紧跟一个冒号(:),表示从命令树的最高层重新开始命令。

例: FUNC: IMP: RANG 1;: FUNC: IMP: APAR LS

公用命令可以插在命令行的前面、中间或最后,以分号分隔,不影响命令行的层次关系。

例: FUNC: IMP: RANG 1;*trg; APAR LS

命令及参数的缩写规则:

- Ⅰ 如果完整命令或参数(以后称长格式)的字符数小于4(含4个字符),则缩写和长格 式是一样的;
- Ⅰ 长格式字符数大于 4 时:

I. 如第四个字符是元音,则缩写取前3个字符。

II. 如第四个字符不是元音,则缩写取前4个字符。

例如: MODE 缩写为 MODE。

TRIGger 缩写为 TRIG。

LEVel 缩写为 LEV。

FREQuency 缩写为 FREQ。

 有些命令或参数的描述是由两个以上单词组成的,其长格式是取用第一个单词的首字 符和最后一个单词的全部,再从长格式中取用缩写格式。

例如百分比公差(Percent TOLerance)的长格式为 PTOLerance,缩写为 PTOL。 F提示:本仪器在命令的处理中并不区分大小写,包括单位在内。

数值的单位及倍率:

向仪器发送的命令参数是数据时,可以使用单位及单位的倍率。倍率的定义及符号参 见下表:

定	义	符号	本仪器使用
1E18	(EXA)	EX	ý
1E15	(PETA)	PE	Ý
1E12	(TERA)	Т	Ý
1E9	(GIGA)	G	Ý
1E6	(MEGA)	MA.*.	þ
1E3	(KILO)	K	þ
1E-3	(MILI)	M	þ
1E-6	(MICRO)	U	þ
1E-9	(NANO)	N	þ
1E-12	(PICO)	Р	þ
1E-15	(FEMTO)	F	ý
1E-18	(ATTO)	A	Ý
*注:由于本仪器在命令及参数中不区分大小写,			
因此这里与通用的符号定义有所区别。			

表 8-1 倍率定义及符号

倍率一般要求和单位一起使用,而不能单独存在。但仪器的极限数据的单位是依赖于 当前仪器的测量功能的,通过总线输入时,则不需要带单位,倍率(ma,k,m,u,n,p) 也可以直接使用。例如:

CONP:TOL:NOM 100m 主参数是 Z 时,表示 100mΩ,主参数是 Ls 时,表示 100mH。

其它可以带单位的数据命令如下表:

单位及倍率	可用命令
Hz, kHz, maHz*	FREQ
V	VOLT
v, mv	VOLT: LEV
s,ms	TRIG:DELay
*注:频率数据及单位	只能用固定组合,参见 FREQ 子系统命令。

表 8-2 可使用单位及单位倍率的命令

另外,源内阻还可以用 OHM 单位,但数据及单位只能用固定的组合,参见 VOLT 命令。

8.2 符号约定与定义

1. 命令中所用到的语法符号:

- : 冒号是命令的层次,表示进入命令的下一层
- ; 分号表示开始多重命令
- * 星号后的命令是公用命令
- ? 问号表示查询
- , 逗号是多参数的分隔符

空格是命令和参数的分隔符

- "" 引号内是被原样引用的内容,命令分析程序不对其做任何加工
- 2. 在后面的命令解释中,将可能使用到以下符号:
 - NR1:整数,例如:123
 - NR2: 定点数,例如: 12.3
 - NR3: 浮点数,例如: 12.3E+5
 - NL : 行结束符, 是字串输入输出的结束符, 可以是 LF, CR 或 CR+LF
 - **^END: IEEE-488** 总线的 EOI (结束) 信号
 - <> 尖括号包含的字符表示程序代码参数。
 - [] 方括号表示包含的项目是可选的。方括号加上星号(例如, [, <value>*])表示重 复包含的项目(<value>)直到最大数。

{} 当大括号包含几个项目时,表示只能从中选择一个项目。

86

8.3 命令参考

仪器支持如下子	系统命令:		
• DI SP	• FREQ	● VOLT	• FUNC
● FETCh?	• APER	● TRIG	• CORR
● COMP	• BALC	● MVEM	● DFR
仪器支持如下 G	PIB 公用命令:		
● *TRG	● * I DN		

在此后的命令叙述里,每一个子系统命令的解释都给出如下内容:

- 1. 子系统命令名及其概要应用说明
- 2. 命令树及其层次结构
- 3. 每一个命令的缩写(以大写表示)
- 4. 子命令的具体描述
- 5. 命令的语法
- 6. 符合语法规则的命令例子
- 7. 查询语法
- 8. 查询返回内容

8.3.1 DISPIay 子系统命令

DISPIay 子系统命令主要用于设定仪器的显示页面。图 8-2 是 DISPIay 子系统命令树。

DISPlay —— : PAGE MEASurement

MSETup LTABle FLISt SYSTem BALMeasure BNUMber BALLimtable BALBnumber DFRequency

图 8—2 DISPlay 子系统命令数

:PAGE 设定仪器的显示画面, :PAGE? 可以查询当前 LCD 屏上显示的页面。 命令语法: DISPIay:PAGE <page name> <page name>具体如下:

MEASurement	设定显示页面至:元件测量显示页面(MeasDisplay)
MSETup	设定显示页面至:测量设置页面(Meas Setup)
LTABIe	设定显示页面至:极限列表设置页面(Limit Table)
FLISt	设定显示页面至: 文件列表页面(Files List)
SYSTem	设定显示页面至:系统配置页面(System Config)
BALMeasure	设定显示页面至:平衡测试页面(Bal Display)
BNUMber	设定显示页面至: 档号显示页面(BinNo. Disp)
BALLimtable	设定显示页面至:平衡极限列表设置页面(B-Lim Table)
BALBnumber	设定显示页面至:平衡测试档号显示页面(B-Bin Disp)
DFRequency	设定显示页面至:双频平衡测试页面(DoubleFreqMea)

例如: WrtCmd("DISP:PAGE NEAS") 设定显示页面至: 元件测量显示页面

查询语法: DISPIay:PAGE?

查询返回: <page name><NL^END>

page name>具体如下:

<lcrmeasurement></lcrmeasurement>	表示当前页面为:	元件测量显示页面
<meassetup></meassetup>	表示当前页面为:	测量设置页面
<limittable></limittable>	表示当前页面为:	极限列表设置页面
<filelist></filelist>	表示当前页面为:	文件列表页面
<systemconfig></systemconfig>	表示当前页面为:	系统配置页面

<bal measurement=""></bal>	表示当前页面为:	平衡测试页面
<binnumber></binnumber>	表示当前页面为:	档号显示页面
<ballimittable></ballimittable>	表示当前页面为:	平衡极限列表设置页面
<bal binnumber=""></bal>	表示当前页面为:	平衡测试档号显示页面
<doublefreq></doublefreq>	表示当前页面为:	双频平衡测试页面

8.3.2 FREQuency 子系统命令

FREQuency 子系统命令主要用于设定仪器的测试频率, **FREQuency**? 可以查询当前的测试频率。 命令语法:

具体如下:

<value> 频率参数

设定的频率参数只能为如下固定的几种:

50, 60, 100, 120, 1000, 10000, 20000, 40000, 50000, 100000 50hz, 60hz, 100hz, 120hz, 1khz, 10khz, 20khz, 40khz, 50khz, 100khz

MIN 设定至仪器支持的最小测量频率,即 50Hz

MAX 设定至仪器支持的最大测量频率,即 100kHz

例如: WrtCmd("FREQ 1kHZ"),设定频率为 1000Hz。

查询语法: FREQuency?

查询返回: <NR1><NL^END>

8.3.3 VOLTage 子系统命令

VOLTage 子系统命令主要用于设定仪器的测试电平电压、内偏置和输出内阻, VOLTage?可以查询当前的测试电平电压。图 8-3 是 VOLTage 子系统命令树。

图 8-3 VOLTage 子系统命令树

命令语法:

具体如下:

 <value> 是 NR1, NR2 数据格式或再加 V 后缀的参数,可设定的电平是 0.1V、 0.3V 或 1V
 MIN 设定测量电平电压为 0.1V
 MAX 设定测量电平电压为 1V

例如: WrtCmd("VOLT 100mV"); 设定电平电压为 0.1V。

查询语法: VOLTage?或 VOLTage:LEVel? 查询返回: <NR2><NL^END>

:SRESistance 用于设定仪器的源内阻(Source Resistance) 命令语法:

$$VOLTage: SRESis \tan ce \begin{cases} 30ohm \\ 100ohm \end{cases}$$

例如: WrtCmd("VOLT:SRES 30ohm"),设定仪器的输出内阻为 30 OHM

TH2817CX 使用说明书

查询语法: VOLTage:SRESistance? 查询返回: <Sres><NL^END> Sres 为 30ohm 或 100ohm。

:BIAS:SOURce 用于设置偏置电压。 命令语法:

$$VOLTage: BIAS: SOURce \begin{cases} 2V \\ -2V \\ EXT \\ 0V \end{cases}$$

例如: WrtCmd("VOLT:BIAS:SOUR 2V"),设定仪器内偏置电压为 2V。

查询语法: VOLTage:BIAS:SOURce? 查询返回: <Bias><NL[^] END> Bias 为 2V,-2V,EXT 或 0V 中的一种。

:BIAS:MODE 用于设置偏置模式。 命令语法

这里:

VOLT 设置为偏压模式

CURR 设置为偏流模式

例如: WrtCmd("VOLT:BIAS:MODE CURR"),用于设定偏置为偏流模式。

查询语法: VOLTage:BIAS:MODE?

查询返回: <Mode><NL ^ END>

Mode 为 VOLT 或 CURR。

8.3.4 FUNCtion 子系统命令

FUNCtion 子系统命令主要用于设定测量参数,量程,自动 LCR。图 8-4 是 FUNCtion 子系统命令树。

图 8-4 FUNCtion 子系统命令树

:IMPedance:APARameter 设定仪器的主参数类型。视仪器不同的测试页面支持的参数类型 有区别。具体参数参阅 2.1.2。

:IMPedance:APARameter? 查询当前的主参数类型。

例如: WrtCmd("FUNC: IMP: APAR Z"),用于设定仪器的测量主参数为 Z。

查询语法: FUNCtion: IMPedance: APARameter?

查询返回: <function A><NL ^ END>

<function A>具体为: ls, lp, cs, cp, rs, rp, z, l2a, l2b, r2

:IMPedance:BPARameter 设定仪器的副参数类型。视仪器不同的测试页面支持的参数类型 有区别。具体参数参阅 2.1.2。

:IMPedance:BPARameter? 查询当前的副参数类型。

例如: WrtCmd("FUNC: IMP: BPAR Q"),用于设定仪器的测量副参数为Q。

- 查询语法: FUNCtion: IMPedance: BPAR?
- 查询返回: <function B><NL ^ END>

<function B>具体为: deg(角度), rad (弧度), r, x, dcr, q, d, n, 1n, m, r2
:IMPedance:RANGe 用于设定仪器的 LCR 量程。

:IMPedance:RANGe? 查询当前的量程参数。

命令语法: FUNCtion:IMPedance:RANGe <value>

这里, <value>只能以 0~8 表示, 其它为非法量程设定。量程号对应的阻抗测量范围 请参阅第四章 4.2.1.6 量程设定中的相关内容。

例如: WrtCmd("FUNC:INP:RANG 4"),用于设定仪器的量程为1kOHM。

F提示: 设定量程后,量程即进入锁定(HOLD)方式,直至再次改变量程。

查询语法: FUNCtion: IMPedance: RANGe?

查询返回: <value><NL^END>

这里, <value>由量程号与阻抗定义共同组成,如下:

0:100kohm, 1:30kohm, 2:10kohm, 3:3kohm, 4:1kohm,

5:300ohm, 6:100ohm, 7:30ohm, 8:10ohm,

:IMPedance:RANGe:AUTO 用于设定仪器的量程自动选择方式。 :IMPedance:RANGe:AUTO? 查询当前的量程状态。

命令语法:

$$FUNCtion: IMPedance: AUTO \begin{cases} ON \\ OFF \\ 1 \\ 0 \end{cases}$$

这里: 字符 1 (整数 49) 与 ON 等价 字符 0 (整数 48) 与 OFF 等价

例如: WrtCmd("FUNC: INP: RANG: AUTO ON"); 用于设定仪器的量程为自动。

查询语法: FUNCtion:IMPedance:RANGe:AUTO?

查询返回: <NR1><NL^END>

:IMPedance:DRANge 用于设定仪器的 DCR 量程。

:IMPedance:DRANge? 查询当前的量程参数。

命令语法: FUNCtion:IMPedance:DRANge <value>

这里, <value>只能以 0~9 表示, 其它为非法量程设定。量程号对应的阻抗测量范围 请参阅第四章 4.2.1.6 量程设定中的相关内容。

例如: WrtCmd("FUNC: IMP: DRANG 4"),用于设定仪器的 DCR 量程为 1kOHM。

F提示: 设定量程后,量程即进入锁定(HOLD)方式,直至再次改变量程。

查询语法: FUNCtion: IMPedance: DRANGe?

查询返回: <value><NL^END>

这里, <value>由量程号与阻抗定义共同组成, 如下:

```
0:100kohm, 1:30kohm, 2:10kohm, 3:3kohm, 4:1kohm,
```

5: 300ohm, 6: 100ohm, 7: 30ohm, 8: 10ohm, 9: 30hm

:IMPedance:DRANge:AUTO 用于设定仪器的量程自动选择方式 **:IMPedance:DRANge:AUTO**? 查询当前的量程状态。 命令语法:

$$FUNCtion: IMPedance: AUTO \begin{cases} ON \\ OFF \\ 1 \\ 0 \end{cases}$$

这里: 字符 1 (整数 49) 与 ON 等价 字符 0 (整数 48) 与 OFF 等价

例如: WrtCmd("FUNC: INP: DRANge: AUTO ON"); 用于设定仪器的 DCR 量程为自动。

查询语法: FUNCtion:IMPedance:DRANge:AUTO? 查询返回: <NR1><NL^END>

:ALCZ 用于设定自动 LCZ 开关 命令语法:

 $FUNCtion: ALCZ \begin{cases} ON \\ OFF \\ 1 \\ 0 \end{cases}$

这里: 字符1(整数49)与 ON 等价 字符0(整数48)与 OFF 等价 例如: WrtCmd("FUNC:ALCZ ON"),用于设定自动LCZ 开。

查询语法: FUNCtion: ALCZ? 查询返回: <NR1><NL^END> **:DISC** 用于设定放电测量开关。 命令语法:

$$FUNCtion: DISCh \arg e \begin{cases} ON \\ OFF \\ 1 \\ 0 \end{cases}$$

这里: 字符 1 (整数 49) 与 0N 等价 字符 0 (整数 48) 与 0FF 等价

例如: WrtCmd("FUNC:DISC ON"),用于打开放电测量。

查询语法: FUNCtion: DISC?

查询返回: <NR1><NL^END>

8.3.5 FETCh?子系统命令

FETCh?子系统命令用于查询仪器被触发测量后的测量结果。 FETCh 子系统命令为:FETCh[:IMP]?

[:IMP]?命令用于输出仪器最近一次测量的结果。

查询语法: FETCh[:IMP]?

FETCh[:IMP]? 命令使仪器将最近一次的或即将完成的测量结果复制到输出缓冲区。

具体来说,仪器收到该查询命令后,如果仪器上次测量已结束而处于触发等待中,则输 出上次测量结果,如果上次测量已被 FETC?过,则测量结果将在下次测量结束后输出,如果 正在测量过程中,则在本次测量结束后输出。

这里的"输出"是指输出到缓冲区,在 GPIB 总线上,仪器处于讲者状态时,缓冲区数据被输出;在 RS232C 总线上,只要输出缓冲区有数据,总是被立即输出。

例如: WrtCmd("TRIG:SOUR BUS")

WrtCmd("TRIG")

WrtCmd("FETC?")

查询结果的输出详见第七章"数据格式"一节。

i 注意:在非测量页面,FETC?命令同样有效。

8.3.6 APERture 子系统命令

APERture 子系统命令主要用于设定测量的速度,测量中使用的滤波次数。**APERture**? 查询当前的测量速度,测量中使用的平均次数。 命令语法:

```
      APERture
      SHORt或FAST
MEDium
LONG或SLOW
      [, \value \value ]

      这里:
      SHORt 或 FAST:
      快速,约 20 次/秒

      MEDium:
      中速,约 10 次/秒

      LONG 或 SLOW:
      慢速,约 2 次/秒

      <value>
      1 至 99 (NR1)的滤波次数。

      例如:
      WrtCmd("APER MED,5")
```

查询语法: APERture?

查询返回:

٢	FAST	ſ
$\left\{ \right.$	MED	
L	SLOW	J

8.3.7 TRIGger 子系统命令

TRIGger 子系统命令用于仪器触发测量或设定仪器的触发模式,触发测量后的延时时间。图 8-5 是 TRIGger 子系统命令树。

图 8-5 TRIGger 子系统命令树

:IMMediate 用于触发仪器完成一次测量。

命令语法: TRIGger[:IMediate]

例如: WrtCmd("TRIG")

i 注意: 在非测量页面, 该命令同样会产生一次有效触发。

:SOURce 用于设定仪器的触发源,**:SOURce**? 查询当前的触发源。 命令语法:

这里:

INTernal 被仪器自动触发,是仪器的默认设置。

EXTernal 被 HANDLER 接口触发。

BUS 被 RS232 接口或 GPIB 接口触发。

HOLD 或 MAN 在面板按 TRIGGER 键触发,但按键在远程控制时失效,因此实际 无法触发,TH2817CX 允许在这种情况仍接受 BUS 触发。

例如: WrtCmd("TRIG:SOUR BUS"),设定为总线触发。

查询语法: **TRIGger:SOURce?** 查询返回:

> { INT Ext Bus Hold

:DELay 命令用于设定仪器测量后的延时时间, :DELay? 查询当前的延时时间。 命令语法:

$$TRIGger: DELay \begin{cases} \langle value \rangle \\ MIN \\ MAX \end{cases}$$

具体如下:

<value> 可以是 NR1, NR2, NR3 数据格式或再加 m, ms 后缀的参数, 以 1ms 为分辨 率的 0—60 秒时间。

MIN 设定延时参数为 0 秒。

MAX 设定延时参数为 **60** 秒。

- 例如: WrtCmd("TRIG:DEL 5S"),设定延时参数为5秒。
 - WrtCmd("TRIG:DEL MIN"),设定延时参数为0秒。
- 查询语法: TRIGger:DELay?
- 查询返回: <NR3><NL^END>

8.3.8 CORRection 子系统命令

CORRection 子系统命令用于设定用户校正参数,包括开路,短路校正的设定。图 8-6 是 CORRection 子系统命令树。

图 8-6 CORRection 子系统命令树

[:STATe] 用于打开或关闭开路与短路清零校正。 命令语法:

:SHORt 命令启动扫频短路清零。 命令语法: CORRection:SHORt 例如: ₩rtCmd("CORR:SHORt") :OPEN 命令启动扫频开路清零。 命令语法: CORRection:OPEN 例如: WrtCmd("CORR:OPEN")

:SPOT:SHORt 用于启动点频短路清零。 命令语法: CORRection:SPOT:SHORt 例如: WrtCmd("CORR:SPOT:SHORt")

:SPOT:OPEN 用于启动点频开路清零。 命令语法: CORRection:SPOT:OPEN 例如: WrtCmd("CORR:SPOT:OPEN")

:SPOT:DCR 用于 DCR 短路清零。 命令语法: CORRection:SPOT:DCR 例如: WrtCmd("CORR:SPOT:DCR")

:CABLe 用于设定校正电缆长度。 命令语法:

$$COR \operatorname{Re} ction : CABLe \begin{cases} 0m \\ 1m \end{cases}$$

例如: WrtCmd("CORR: CABL 1M"),选择1m电缆长度校正。

查询语法: CORRection?或 CORRection:CABLe? 查询返回: <Cable><NL^END> Cable 为 Om 或 1m
8.3.9 COMParator 子系统命令

COMParator 子系统命令用于设定档比较器参数,包括比较开关的设定,极限列表的设定。图 8-6 是 COMParator 子系统命令树。

图 8-6 COMParator 子系统命令树

[:STATe]用于设定仪器比较功能开启或关闭。[:STATe]查询当前比较功能状态。 命令语法:

查询语法: COMParator[:STATe]? 查询返回: <NR1><NL^END>

:MODE 用于设定仪器主参数公差模式,:MODE? 查询当前设定的公差模式。 命令语法:

这里:

ATOLerance (AbsoluteTOLerance) 设置绝对公差方式 PTOLerance (PercentTOLerance) 设置百分比公差方式 例如: WrtCmd("COMP:MODE ATOL") 查询语法: COMParator:MDDE? 查询返回:

:TOLerance:NOMinal 用于设定比较器的标称量。**:TOLerance:NOMinal**? 查询当前仪器设定的标称量。

命令语法: COMParator:TOLerance:NOMinal <value>

这里〈value>为 NR1, NR2 或 NR3 数据格式或再加 ma,k,m,μ,n,p 后缀的参数。 例如: WrtCmd("COMP:TOL:NOM 100E-12")

i 注意: <value>不必使用单位,单位由当前仪器的测量参数决定,参见8.1章节说明。

查询语法:COMParator:TOLerance:NOMinal?

查询返回: <NR3><NL^END>

:TOLerance:NREF 用于设定变压器匝比参考值。**:TOLerance:NREF**? 查询当前仪器设定的 变压器匝比参考值。

命令语法: COMParator:TOLerance:NREF <value> 这里(value>为 NR1 数据格式。

这主(Value>为 INT 数据俗厶

例如: COMParator:TOLerance:NREF 10

查询语法: COMParator:TOLerance:NREF?

查询返回: <NR1><NL^END>

:TOLerance:BINn 用于设定比较器 n 档上下限极限数值。

:TOLerance:BINn? 查询当前仪器的 n 档极限数值。

这里, n 是 1, 2 或 3, 分别表示比较器 1 档, 2 档或 3 档。

命令语法: COMParator:TOLerance:BINn < Iow, high>

这里,low 是下限,high 是上限。

例如 : WrtCmd("CONP:TOL:BINn -5,5")

i 注意: <**l**ow,high>为 NR1, NR2 或 NR3 数据格式或再加 ma,k,m,μ,n,p 后缀的参数,不 必使用单位,单位由当前仪器的测量参数决定,参见 8.1 章节说明。 **i 注意: 合理的比较器设置应该是下限数据应小于上限数据。**

查询语法: COMParator:TOLerance:BINn?

查询返回: <low,high><NL^END>

<low,high>是 NR3 数据格式。

:Second LIMit 用于设定比较器的副参数上下限数值。

:Second LIMit? 查询仪器当前副参数上下限数值。

命令语法: COMParator:SecondLIMit < Iow, high >

这里,low 是下限,high 是上限。

例如: WrtCmd("COMP:SLIM 0.001,0.002")

i 注意: <**l**ow,h**i**gh>为 NR1, NR2 或 NR3 数据格式或再加 ma,k,m,μ,n,p 后缀的参数,不 必使用单位,单位由当前仪器的测量参数决定,参见 8.1 章节说明。

i 注意: 合理的比较器设置应该是下限数据应小于上限数据。

查询语法: COMParator:SecondLIMit?

查询返回: <NR3,NR3><NL^END>

:ABIN 用于设定比较器的附属档开关。:ABIN? 查询仪器当前附属档开关情况。 命令语法:

$$COMParator : AuxiliaryBIN \begin{cases} ON \\ OFF \\ 1 \\ 0 \end{cases}$$
这里:

0(整数 48)	等价 OFF
1(整数 49)	等价 ON

例如: WrtCmd("COMP:ABIN ON")

查询语法: COMParator:AuxiliaryBIN? 查询返回: <NR1><NL^END>

8.3.10 BALCompare 子系统命令

BALCompare 子系统命令用于设定平衡测试档比较器参数,包括比较开关的设定,极限 列表的设定。图 8-7 是 BALCompare 子系统命令树。

[:STATe]用于设定仪器比较功能开启或关闭。[:STATe]查询当前比较功能状态。 命令语法:

c

BALCompare[: STATe]
$$\begin{cases} ON \\ OFF \\ 1 \\ 0 \end{cases}$$
 这里:
1 (整数 49) 等价 ON

0 (整数 48) 等价 OFF 例如: WrtCmd("BALC ON")

查询语法: BALCompare[:STATe]?

查询返回: <NR1><NL^END>

:MDDE 用于设定仪器平衡测试副参数公差模式,:MDDE? 查询当前设定的副参数公差模式。 命令语法:

这里:

```
ATOLerance(AbsoluteTOLerance) 设置绝对公差方式
      PTOLerance (PercentToLerance) 设置百分比公差方式
例如: WrtCmd("BALC:MODE ATOL")
查询语法: BALCompare: MDDE?
```

查询返回:

:TOLerance:NOMinal 用于设定比较器的标称量。:TOLerance:NOMinal? 查询当前仪器设定的标称量。

命令语法: BALCompare:TOLerance:NOMinal <value>

这里〈value>为 NR1, NR2 或 NR3 数据格式或再加 ma,k,m, µ, n,p 后缀的参数。 例如: WrtCmd("BALC:TOL:NOM 100E-12")

i 注意: <value>不必使用单位,单位由当前仪器的测量参数决定,参见8.1章节说明。

- 查询语法: BALCompare:TOLerance:NOMinal?
- 查询返回: <NR3><NL^END>

:TOLerance:BINn 用于设定比较器 n 档上下限极限数值。

:TOLerance:BINn? 查询当前仪器的 n 档极限数值。

这里, n 是 1, 2 或 3, 分别表示比较器 1 档, 2 档或 3 档。

命令语法: BALCompare:TOLerance:BINn <low,high>

这里, low 是下限, high 是上限。

例如 : WrtCmd("BALC:TOL:BINn -5,5")

i 注意: <**l**ow,**hi**gh>为 NR1, NR2 或 NR3 数据格式或再加 ma,k,m, µ,n,p 后缀的参数,不 必使用单位,单位由当前仪器的测量参数决定,参见 8.1 章节说明。

- i 注意: 合理的比较器设置应该是下限数据应小于上限数据。
- 查询语法: BALCompare:TOLerance:BINn?
- 查询返回: <low,high><NL^END>

<low,high>是 NR3 数据格式。

:Second LIMit 用于设定比较器的副参数上下限数值。

:Second LIMit? 查询仪器当前副参数上下限数值。

命令语法: BALCompare:SecondLIMit <low,high >

这里,low 是下限,high 是上限。

例如: WrtCmd("BALC:SLIM 0.001,0.002")

i 注意: <**l**ow,**h**igh>为 NR1, NR2 或 NR3 数据格式或再加 ma,k,m, µ,n,p 后缀的参数,不 必使用单位,单位由当前仪器的测量参数决定,参见 8.1 章节说明。

i 注意: 合理的比较器设置应该是下限数据应小于上限数据。

查询语法: BALCompare:SecondLIMit?

查询返回: <NR3,NR3><NL^END>

8.3.11 Mass MEMory 子系统命令

Mass NEMory 子系统命令用于文件的保存与加载。图 8-8 是 Mass NEMory 子系统命令树。

图 8-8 Mass MEMory 子系统命令树

:LOAD 命令用于加载已保存的文件。

命令语法: Mass MEMory:LOAD <value>

这里, <value>是 0~11(NR1)的文件序号

例如: WrtCmd("MMEM:LOAD 1")

F提示:如果加载的文件号不存在,仪器将显示出错信息。

:SAVE 命令用于保存当前仪器的设置到一个文件。

命令语法: Mass MEMory:SAVE <value>[, < "filename" >]

这里, <value>是 0~11(NR1)的文件序号

< "filename">要保存的文件名,可用 18 个以内的 ASCII 字符表示,注意 要用引号将文件名括起来。如果未指定文件名,仪器以缺省的<Unnamed>命名。

例如: WrtCmd("MMEM:SAVE 1,"TH2817CX"")

i 注意:本仪器在覆盖已存在的文件记录时并不提示。

:ERASe 或 DEL 命令用于擦除已存在的文件。

命令语法: Mass MEMory:ERASe <value>

这里, <value>是 0~11(NR1)的文件序号

例如: WrtCmd("MMEM:ERASe 2")

8.3.12 DFRequency 子系统命令

DFRequency 子系统命令主要用于设定双频平衡测试的频率。图 8—9 为 DFRequency 子系统 命令树。

图 8—9 DFRequency 子系统命令树

:fa 设置双频测试的第一个测试频率 命令语法:

```
DF \operatorname{Re} quency : fa \begin{cases} < value > \\ MIN \\ MAX \end{cases}
```

具体如下:

<value> 频率参数

设定的频率参数只能为如下固定的几种:

50, **60**, **100**, **120**, **1000**, **10000**, **20000**, **40000**, **50000**, **100000**

50hz, 60hz, 100hz, 120hz, 1khz, 10khz, 20khz, 40khz, 50khz, 100khz

- MIN 设定至仪器支持的最小测量频率,即 50Hz
- MAX 设定至仪器支持的最大测量频率,即 100kHz

例如: WrtCmd("DFRequency:fa 1kHZ"),设定第一个频率为 1000Hz。

- 查询语法: **DFRequency:fa**?
- 查询返回: <NR1><NL^END>

:fb 设置双频测试的第二个测试频率,具体语法参阅:fa 的语法。

8.3.13 公用命令

本仪器目前仅提供以下几种公用命令:

*TRG 命令用于触发仪器测量,并将测量结果写入输出缓冲器中。即等同于 TRIG+FETCh? 命令。

命令语法: *TRG 例如: WrtCmd("*TRG")

*IDN? 命令用于查询仪器信息。

查询语法:*IDN?

查询返回: <product>, <version><NL^END> 这里: <product> 为 TH2817CX LCR Balance Tester <version> 软件版本号

8.4 出错信息

从 RS232C 或 GPIB 接口发送到本仪器的命令如果包含错误,仪器将显示出错信息,中止并忽略当前命令行的后续命令。

错误代码	说 明
Unknow Message!	未知消息,即无法识别的命令。
	例如: *TRIG → 应该为*TRG
Syntax Error!	语法错误,错写、多写或漏写了语法符号
	例如:TRIG IMM,应该写成TRIG:IMM(IMM 是可选的触发
	命令,不是 TRIG 的参数)
Ennon Donomotor	参数错误,无法识别的命令参数
Error Parameter	例如: VOLT: LEV 0.5V, 电平数值不在仪器支持的范围内
Emor Suffix	后缀错误,一般是不匹配的单位,倍率等。
Error Sullix	例如: COMP:TOL:NOM 100PF,应写为 COMP:TOL:NOM 100P
Data Too Long!	命令或数据字节太长,一般最长不允许超过 20 字节
Cannot Executed	无法执行,当前状态下无法执行的命令。

第九章 分选接口使用说明

9.1 基本信息

本仪器向用户提供了功能强大的 HANDLER 接口,该接口主要用于仪器分选结果的输出。当仪器使用于自动元件分选测试系统中时,该接口提供与系统的联络信号和分选结果输出信号。联络信号包括 TRIG (测试启动)、IDX (AD 转换结束)、EOM (全部测量结束) 三种信号,分选结果可输出合格档 (BIN1-n),附属档 (AUX)和不合格档 (OUT)。不合格时还有更详尽的主参数偏高 (PHI)、主参数偏低 (PLO)和副参数不合格 (SREJ)信号输出。使用这些信号,仪器可以方便的和系统控制器组成自动测试系统,进行元器件的测试、分选和质量控制,从而提高生产效率。

技术参数

表 9-1 显示了 HANDLER 接口有关技术参数。

输出信号:
比较结果输出信号:
光电隔离,低电平有效;
上拉电源可选择内部 VCC 或外部 EXV1
/BIN1: 一档合格
/BIN2: 二档合格
/BIN3: 三档合格
/NG 或/OUT:不合格
/AUX: 附属档,即主参数合格但副参数不合格
/ PHI: 主参数偏高
/PLO: 主参数偏低
/SREJ: 副参数不合格(主参数不合格时不会输出此信号)
控制输出信号:
光电隔离,低电平有效;
上拉电源可选择内部 VCC 或外部 EXV2
/IDX: A/D 转换结束
/EOM: 全部测量完成,HANDLER 口信号有效。
输入信号:
/TRIG: 外部触发,脉宽≥10μ s ,上升或下降沿触发;
光电隔离,低电平驱动,电流 5~10mA

表 9-1 HANDLER 接口技术参数

F提示: 信号名称前的斜杠 "/"表示该信号在低电平时有效。

9.2 信号定义

这一节介绍一些信息,包括接口信号线及电气特征描述以及使用 HANDLER 接口输入输出信号时序。

表 9-2 HANDLER	接口的引	脚定义表
---------------	------	------

管脚号	信号名	描述
1	/BIN1	档分选判别结果输出。
2	/BIN2	所有信号都是内置上拉电阻的集电极输出。上拉电源可选择
3	/BIN3	内部+5V 电源,或外部电源 EXV1。
4, 5, 6	NC	仪器出厂默认使用外部上拉电源。
7, 8, 9	NC	
10	/NG 或/OUT	
11	/AUX	
12, 13	/TRIG	此信号的下降沿或上升沿触发仪器测量
14, 15	EXV2	比较器输出控制信号的外部上拉电源。
16, 17, 18	VCC	内部+5V(VCC)电源输出。
19	/PHI	因主参数偏高而不合格。
20	/PLO	因主参数偏低而不合格。
21	/SREJ	副参数不合格。
22, 23, 24	NC	未使用
25, 26	ne	
27, 28	EXV1	比较器分选结果输出信号的外部上拉电源。
29	NC	未使用
		A/D转换结束后/IDX 有效。
30	/IDX	当该信号有效后,允许自动测试机将下一个元件移入待测工
		位。 然而当前测量结果要等到/EOM 有效时才输出。
31	/EOM	测量结束,当测量数据与比较结果有效时该信号有效。
32, 33	COM2	外部电源 EXV2 的参考地。
34, 35, 36	COM1	外部电源 EXV1 的参考地。

主参数

PHI (OUT)			
	BIN 1		
SREJ (AUX)	BIN 2	SREJ (AUX)	
	BIN 3		
PLO (OUT)			

─── 副参数

图 9-1 档比较功能/PHI, /PLO, /SREJ 信号区域示例

图 9-3 档比较器信号输出时序图

9.3 电气特征

连接 HANDLER 口到外部控制器时,请参考本节关于 HANDLER 接口电气特征的介绍。

9.3.1 直流隔离输出

每个直流输出信号(管脚 1-11, 19-21, 30, 31)都是光电耦合器隔离的集电极输出。 每根信号线上的输出电压由 HANDLER 接口板上的上拉电压设定。上拉电压可以通过设置 跳线由内部电源(+5V)提供,或由外部电压(EXV: +5~+24V)提供,跳线设置参阅图 9-4。

F提示: 仪器出厂的默认跳线设置是使用外部电源。 直流隔离输出分为比较结果输出信号和控制输出信号两个类型,参见下表:

絵山信号	输出额定电压		是十由法	由吸会老地
相山后 5	低电平高电平取入电流		电始参传地	
分选信号				内部上拉电压:
/BIN1 - /BIN3				仪器参考地(GND)
/OUT		15V~		
/AUX	≤0.5V	+3V	6mA	外部电压 (EXV1):
/PHI		T24V		COM1
/PLO				
/SREJ				
控制信号		+5V~ +24V	6mA	内部上拉电压:
/IDX				仪器参考地(GND)
/EOM	≤0.5V			
				外部电压 (EXV2):
				COM2

表 9-3 直流隔离输出电气特征

图 9—4 HANDLER 接口跳线位置及设置

如图 9-5 和图 9-6, 仪器的控制信号和分选信号可以上拉至内部 5V 电源,也可以分别 上拉至外部不同的电源,其中 EXV1/COM1 是分选输出信号的电源, EXV2/COM2 是控制 信号的电源,当然也可以使用同一电源,具体取决于外部控制器的电源使用情况。

图 9-5 控制输出信号简化示意图

图 9-6 分选输出信号简化示意图

9.3.2 直流隔离输入

TH2817CX 的直流隔离输入即外部触发输入信号,其电气图如下:

图 9-7 HANDLER 口触发输入信号简图

触发输入信号与控制输出信号共用电源与公共地。

/TRIG 信号(12, 13 脚)连接到光偶中 LED 的阴极, 仪器在/TRIG 信号的下降沿或 上升沿被触发。LED 阳极根据外部电路电源使用情况由跳线跳至内部 5V 或外部 EXV2。

外部驱动电路在/TRIG 信号上至少应能提供 5mA 的拉电流,典型驱动电路如图 9-8 所示:

图 9-8 用继电器控制触发

用继电器作为触发开关时,要注意继电器存在动作时间,而且由于触点抖动的存在, 很容易产生误触发,用达林顿反向驱动器则不存在触点抖动。

图 9-9 使用达林顿反向器驱动触发信号

大部分 PLC 逻辑输出端子具有足够的低电平驱动能力,可以直接驱动触发信号。

第十章 成套与保修

10.1 成套

仪器出厂时应具备以下几项内容:

序号	名称	数量
1	TH2817CX 仪器	1台
2	TH26011A 开尔文测试电缆	1付
3	TH26005A 测试夹具	1台
4	TH26010 镀金短路板	1片
5	TH26049 平衡测试夹具	1台
6	三线电源线~	1根
7	1A 保险丝~ 🏝	2 只
8	使用说明书	1份
9	测试报告	1份
10	质保证书	1张

用户收到仪器后,开箱检查时请核对以上内容,若发生遗缺,请立即与本公司或经营 部门联系。

本仪器 IEEE-488 接口为选件, 需另行购买。

10.2 保修

保修期:使用单位从本公司购买仪器者,自公司发运日期计算,自经营部门购买者, 自经营部门发运日期计算,保修期二年。保修应出具该仪器保修卡。保修期内,由于使用 者操作不当而损坏仪器者,维修费用由用户承担。仪器由本公司负责终生维修。

本仪器维修需专业技术人员进行维修;维修时请不要擅自更换仪器内部各器件;对仪 器维修后,需重新计量校准,以免影响测试精度。由于用户盲目维修,更换仪器部件造成 仪器损坏不属保修范围,用户应承担维修费用。

仪器应防晒、防湿,应在1.2所述的环境中正确使用仪器。

长期不使用仪器,应将仪器用出厂时包装箱包装封存。